Easy to Apply Polyoxazoline-Based Coating for Precise and Long-Term Control of Neural Patterns

Arranging cultured cells in patterns via surface modification is a tool used by biologists to answer questions in a specific and controlled manner. In the past decade, bottom-up neuroscience emerged as a new application, which aims to get a better understanding of the brain via reverse engineering a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 35 vom: 05. Sept., Seite 8594-8605
1. Verfasser: Weydert, Serge (VerfasserIn)
Weitere Verfasser: Zürcher, Stefan, Tanner, Stefanie, Zhang, Ning, Ritter, Rebecca, Peter, Thomas, Aebersold, Mathias J, Thompson-Steckel, Greta, Forró, Csaba, Rottmar, Markus, Stauffer, Flurin, Valassina, Irene A, Morgese, Giulia, Benetti, Edmondo M, Tosatti, Samuele, Vörös, János
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Oxazoles Polymers Polylysine 25104-18-1 Polyethylene Glycols 3WJQ0SDW1A
LEADER 01000naa a22002652 4500
001 NLM274663619
003 DE-627
005 20231225003952.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.7b01437  |2 doi 
028 5 2 |a pubmed24n0915.xml 
035 |a (DE-627)NLM274663619 
035 |a (NLM)28792773 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Weydert, Serge  |e verfasserin  |4 aut 
245 1 0 |a Easy to Apply Polyoxazoline-Based Coating for Precise and Long-Term Control of Neural Patterns 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.01.2019 
500 |a Date Revised 28.01.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Arranging cultured cells in patterns via surface modification is a tool used by biologists to answer questions in a specific and controlled manner. In the past decade, bottom-up neuroscience emerged as a new application, which aims to get a better understanding of the brain via reverse engineering and analyzing elementary circuitry in vitro. Building well-defined neural networks is the ultimate goal. Antifouling coatings are often used to control neurite outgrowth. Because erroneous connectivity alters the entire topology and functionality of minicircuits, the requirements are demanding. Current state-of-the-art coating solutions such as widely used poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) fail to prevent primary neurons from making undesired connections in long-term cultures. In this study, a new copolymer with greatly enhanced antifouling properties is developed, characterized, and evaluated for its reliability, stability, and versatility. To this end, the following components are grafted to a poly(acrylamide) (PAcrAm) backbone: hexaneamine, to support spontaneous electrostatic adsorption in buffered aqueous solutions, and propyldimethylethoxysilane, to increase the durability via covalent bonding to hydroxylated culture surfaces and antifouling polymer poly(2-methyl-2-oxazoline) (PMOXA). In an assay for neural connectivity control, the new copolymer's ability to effectively prevent unwanted neurite outgrowth is compared to the gold standard, PLL-g-PEG. Additionally, its versatility is evaluated on polystyrene, glass, and poly(dimethylsiloxane) using primary hippocampal and cortical rat neurons as well as C2C12 myoblasts, and human fibroblasts. PAcrAm-g-(PMOXA, NH2, Si) consistently outperforms PLL-g-PEG with all tested culture surfaces and cell types, and it is the first surface coating which reliably prevents arranged nodes of primary neurons from forming undesired connections over the long term. Whereas the presented work focuses on the proof of concept for the new antifouling coating to successfully and sustainably prevent unwanted connectivity, it is an important milestone for in vitro neuroscience, enabling follow-up studies to engineer neurologically relevant networks. Furthermore, because PAcrAm-g-(PMOXA, NH2, Si) can be quickly applied and used with various surfaces and cell types, it is an attractive extension to the toolbox for in vitro biology and biomedical engineering 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Oxazoles  |2 NLM 
650 7 |a Polymers  |2 NLM 
650 7 |a Polylysine  |2 NLM 
650 7 |a 25104-18-1  |2 NLM 
650 7 |a Polyethylene Glycols  |2 NLM 
650 7 |a 3WJQ0SDW1A  |2 NLM 
700 1 |a Zürcher, Stefan  |e verfasserin  |4 aut 
700 1 |a Tanner, Stefanie  |e verfasserin  |4 aut 
700 1 |a Zhang, Ning  |e verfasserin  |4 aut 
700 1 |a Ritter, Rebecca  |e verfasserin  |4 aut 
700 1 |a Peter, Thomas  |e verfasserin  |4 aut 
700 1 |a Aebersold, Mathias J  |e verfasserin  |4 aut 
700 1 |a Thompson-Steckel, Greta  |e verfasserin  |4 aut 
700 1 |a Forró, Csaba  |e verfasserin  |4 aut 
700 1 |a Rottmar, Markus  |e verfasserin  |4 aut 
700 1 |a Stauffer, Flurin  |e verfasserin  |4 aut 
700 1 |a Valassina, Irene A  |e verfasserin  |4 aut 
700 1 |a Morgese, Giulia  |e verfasserin  |4 aut 
700 1 |a Benetti, Edmondo M  |e verfasserin  |4 aut 
700 1 |a Tosatti, Samuele  |e verfasserin  |4 aut 
700 1 |a Vörös, János  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 33(2017), 35 vom: 05. Sept., Seite 8594-8605  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:33  |g year:2017  |g number:35  |g day:05  |g month:09  |g pages:8594-8605 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.7b01437  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 33  |j 2017  |e 35  |b 05  |c 09  |h 8594-8605