Characterization of starch phosphorylase from the marine green microalga (Chlorophyta) Tetraselmis subcordiformis reveals its potential role in starch biosynthesis
Copyright © 2017 Elsevier GmbH. All rights reserved.
Veröffentlicht in: | Journal of plant physiology. - 1979. - 218(2017) vom: 01. Nov., Seite 84-93 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Journal of plant physiology |
Schlagworte: | Journal Article Amylopectin Kinetics Maltooligosacchride Nitrogen starvation Reaction direction TsSP4 Algal Proteins Isoenzymes Starch mehr... |
Zusammenfassung: | Copyright © 2017 Elsevier GmbH. All rights reserved. In a marine green starch-producing microalga Tetraselmis subcordiformis, the role of starch phosphorylase (SP) in the starch biosynthesis was disclosed by characterizing the enzyme properties and activity variations during the starch accumulation process. TsSP4, a SP isoform accounting for the major SP activity in T. subcordiformis, was unique to be active in a monomer form with a molecular weight of approximately 110kDa. It resembled one of the chloroplast-located SPs (PhoA) in Chlamydomonas reinhardtii with a similarity of 63.3% in sequence, though it possessed the typical L78/80 domain found in the plastidial SPs (Pho1) of higher plants that was absent in PhoA. TsSP4 exhibited moderate sensitivity to ADP-Glc inhibition and had a high activity for longer-chain linear maltooligosacchride (MOS) and amylopectin against highly branched glycogen as the substrates. TsSP4 had 2-fold higher affinity for Glc-1-P in the synthetic direction than for Pi in the phosphorolytic direction, and the catalytic constant kcat for Glc-1-P was 2-fold of that for Pi. Collectively, TsSP4 preferred synthetic rather than phosphorolytic direction. TsSP4 could elongate MOSs even initially with Pi alone in the absence of Glc-1-P, which further supported its synthetic role in the starch biosynthesis. TsSP4 displayed increased activities in the developing and mature stage of starch biosynthesis under nitrogen-starvation conditions, indicating its possible contribution to the amylopectin amplification |
---|---|
Beschreibung: | Date Completed 14.05.2018 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1618-1328 |
DOI: | 10.1016/j.jplph.2017.07.019 |