Unified Blind Quality Assessment of Compressed Natural, Graphic, and Screen Content Images

Digital images in the real world are created by a variety of means and have diverse properties. A photographical natural scene image (NSI) may exhibit substantially different characteristics from a computer graphic image (CGI) or a screen content image (SCI). This casts major challenges to objective...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 11 vom: 01. Nov., Seite 5462-5474
1. Verfasser: Xiongkuo Min (VerfasserIn)
Weitere Verfasser: Kede Ma, Ke Gu, Guangtao Zhai, Zhou Wang, Weisi Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM274573911
003 DE-627
005 20231225003758.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2735192  |2 doi 
028 5 2 |a pubmed24n0915.xml 
035 |a (DE-627)NLM274573911 
035 |a (NLM)28783636 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiongkuo Min  |e verfasserin  |4 aut 
245 1 0 |a Unified Blind Quality Assessment of Compressed Natural, Graphic, and Screen Content Images 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Digital images in the real world are created by a variety of means and have diverse properties. A photographical natural scene image (NSI) may exhibit substantially different characteristics from a computer graphic image (CGI) or a screen content image (SCI). This casts major challenges to objective image quality assessment, for which existing approaches lack effective mechanisms to capture such content type variations, and thus are difficult to generalize from one type to another. To tackle this problem, we first construct a cross-content-type (CCT) database, which contains 1,320 distorted NSIs, CGIs, and SCIs, compressed using the high efficiency video coding (HEVC) intra coding method and the screen content compression (SCC) extension of HEVC. We then carry out a subjective experiment on the database in a well-controlled laboratory environment. Moreover, we propose a unified content-type adaptive (UCA) blind image quality assessment model that is applicable across content types. A key step in UCA is to incorporate the variations of human perceptual characteristics in viewing different content types through a multi-scale weighting framework. This leads to superior performance on the constructed CCT database. UCA is training-free, implying strong generalizability. To verify this, we test UCA on other databases containing JPEG, MPEG-2, H.264, and HEVC compressed images/videos, and observe that it consistently achieves competitive performance 
650 4 |a Journal Article 
700 1 |a Kede Ma  |e verfasserin  |4 aut 
700 1 |a Ke Gu  |e verfasserin  |4 aut 
700 1 |a Guangtao Zhai  |e verfasserin  |4 aut 
700 1 |a Zhou Wang  |e verfasserin  |4 aut 
700 1 |a Weisi Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 11 vom: 01. Nov., Seite 5462-5474  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:11  |g day:01  |g month:11  |g pages:5462-5474 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2735192  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 11  |b 01  |c 11  |h 5462-5474