Nonnegative Decompositions for Dynamic Visual Data Analysis

The analysis of high-dimensional, possibly temporally misaligned, and time-varying visual data is a fundamental task in disciplines, such as image, vision, and behavior computing. In this paper, we focus on dynamic facial behavior analysis and in particular on the analysis of facial expressions. Dis...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 12 vom: 01. Dez., Seite 5603-5617
1. Verfasser: Zafeiriou, Lazaros (VerfasserIn)
Weitere Verfasser: Panagakis, Yannis, Pantic, Maja, Zafeiriou, Stefanos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM274573865
003 DE-627
005 20231225003758.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2735186  |2 doi 
028 5 2 |a pubmed24n0915.xml 
035 |a (DE-627)NLM274573865 
035 |a (NLM)28783634 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zafeiriou, Lazaros  |e verfasserin  |4 aut 
245 1 0 |a Nonnegative Decompositions for Dynamic Visual Data Analysis 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The analysis of high-dimensional, possibly temporally misaligned, and time-varying visual data is a fundamental task in disciplines, such as image, vision, and behavior computing. In this paper, we focus on dynamic facial behavior analysis and in particular on the analysis of facial expressions. Distinct from the previous approaches, where sets of facial landmarks are used for face representation, raw pixel intensities are exploited for: 1) unsupervised analysis of the temporal phases of facial expressions and facial action units (AUs) and 2) temporal alignment of a certain facial behavior displayed by two different persons. To this end, the slow features nonnegative matrix factorization (SFNMF) is proposed in order to learn slow varying parts-based representations of time varying sequences capturing the underlying dynamics of temporal phenomena, such as facial expressions. Moreover, the SFNMF is extended in order to handle two temporally misaligned data sequences depicting the same visual phenomena. To do so, the dynamic time warping is incorporated into the SFNMF, allowing the temporal alignment of the data sets onto the subspace spanned by the estimated nonnegative shared latent features amongst the two visual sequences. Extensive experimental results in two video databases demonstrate the effectiveness of the proposed methods in: 1) unsupervised detection of the temporal phases of posed and spontaneous facial events and 2) temporal alignment of facial expressions, outperforming by a large margin the state-of-the-art methods that they are compared to 
650 4 |a Journal Article 
700 1 |a Panagakis, Yannis  |e verfasserin  |4 aut 
700 1 |a Pantic, Maja  |e verfasserin  |4 aut 
700 1 |a Zafeiriou, Stefanos  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 12 vom: 01. Dez., Seite 5603-5617  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:12  |g day:01  |g month:12  |g pages:5603-5617 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2735186  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 12  |b 01  |c 12  |h 5603-5617