Model-Based Referenceless Quality Metric of 3D Synthesized Images Using Local Image Description

New challenges have been brought out along with the emerging of 3D-related technologies, such as virtual reality, augmented reality (AR), and mixed reality. Free viewpoint video (FVV), due to its applications in remote surveillance, remote education, and so on, based on the flexible selection of dir...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 27(2018), 1 vom: 03. Jan., Seite 394-405
1. Verfasser: Ke Gu (VerfasserIn)
Weitere Verfasser: Jakhetiya, Vinit, Jun-Fei Qiao, Xiaoli Li, Weisi Lin, Thalmann, Daniel
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM274415216
003 DE-627
005 20231225003434.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2733164  |2 doi 
028 5 2 |a pubmed24n0914.xml 
035 |a (DE-627)NLM274415216 
035 |a (NLM)28767368 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ke Gu  |e verfasserin  |4 aut 
245 1 0 |a Model-Based Referenceless Quality Metric of 3D Synthesized Images Using Local Image Description 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a New challenges have been brought out along with the emerging of 3D-related technologies, such as virtual reality, augmented reality (AR), and mixed reality. Free viewpoint video (FVV), due to its applications in remote surveillance, remote education, and so on, based on the flexible selection of direction and viewpoint, has been perceived as the development direction of next-generation video technologies and has drawn a wide range of researchers' attention. Since FVV images are synthesized via a depth image-based rendering (DIBR) procedure in the "blind" environment (without reference images), a reliable real-time blind quality evaluation and monitoring system is urgently required. But existing assessment metrics do not render human judgments faithfully mainly because geometric distortions are generated by DIBR. To this end, this paper proposes a novel referenceless quality metric of DIBR-synthesized images using the autoregression (AR)-based local image description. It was found that, after the AR prediction, the reconstructed error between a DIBR-synthesized image and its AR-predicted image can accurately capture the geometry distortion. The visual saliency is then leveraged to modify the proposed blind quality metric to a sizable margin. Experiments validate the superiority of our no-reference quality method as compared with prevailing full-, reduced-, and no-reference models 
650 4 |a Journal Article 
700 1 |a Jakhetiya, Vinit  |e verfasserin  |4 aut 
700 1 |a Jun-Fei Qiao  |e verfasserin  |4 aut 
700 1 |a Xiaoli Li  |e verfasserin  |4 aut 
700 1 |a Weisi Lin  |e verfasserin  |4 aut 
700 1 |a Thalmann, Daniel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 27(2018), 1 vom: 03. Jan., Seite 394-405  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:27  |g year:2018  |g number:1  |g day:03  |g month:01  |g pages:394-405 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2733164  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2018  |e 1  |b 03  |c 01  |h 394-405