Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition

Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 8 vom: 03. Aug., Seite 1903-1917
1. Verfasser: Xie, Zecheng (VerfasserIn)
Weitere Verfasser: Sun, Zenghui, Jin, Lianwen, Ni, Hao, Lyons, Terry
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM274415178
003 DE-627
005 20250222020300.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2732978  |2 doi 
028 5 2 |a pubmed25n0914.xml 
035 |a (DE-627)NLM274415178 
035 |a (NLM)28767364 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Zecheng  |e verfasserin  |4 aut 
245 1 0 |a Learning Spatial-Semantic Context with Fully Convolutional Recurrent Network for Online Handwritten Chinese Text Recognition 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Online handwritten Chinese text recognition (OHCTR) is a challenging problem as it involves a large-scale character set, ambiguous segmentation, and variable-length input sequences. In this paper, we exploit the outstanding capability of path signature to translate online pen-tip trajectories into informative signature feature maps, successfully capturing the analytic and geometric properties of pen strokes with strong local invariance and robustness. A multi-spatial-context fully convolutional recurrent network (MC-FCRN) is proposed to exploit the multiple spatial contexts from the signature feature maps and generate a prediction sequence while completely avoiding the difficult segmentation problem. Furthermore, an implicit language model is developed to make predictions based on semantic context within a predicting feature sequence, providing a new perspective for incorporating lexicon constraints and prior knowledge about a certain language in the recognition procedure. Experiments on two standard benchmarks, Dataset-CASIA and Dataset-ICDAR, yielded outstanding results, with correct rates of 97.50 and 96.58 percent, respectively, which are significantly better than the best result reported thus far in the literature 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Sun, Zenghui  |e verfasserin  |4 aut 
700 1 |a Jin, Lianwen  |e verfasserin  |4 aut 
700 1 |a Ni, Hao  |e verfasserin  |4 aut 
700 1 |a Lyons, Terry  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 8 vom: 03. Aug., Seite 1903-1917  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:40  |g year:2018  |g number:8  |g day:03  |g month:08  |g pages:1903-1917 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2732978  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 8  |b 03  |c 08  |h 1903-1917