Robust Online Matrix Factorization for Dynamic Background Subtraction

We propose an effective online background subtraction method, which can be robustly applied to practical videos that have variations in both foreground and background. Different from previous methods which often model the foreground as Gaussian or Laplacian distributions, we model the foreground for...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 7 vom: 03. Juli, Seite 1726-1740
1. Verfasser: Yong, Hongwei (VerfasserIn)
Weitere Verfasser: Meng, Deyu, Zuo, Wangmeng, Zhang, Lei, Hongwei Yong, Deyu Meng, Wangmeng Zuo, Lei Zhang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM27441516X
003 DE-627
005 20231225003434.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2732350  |2 doi 
028 5 2 |a pubmed24n0914.xml 
035 |a (DE-627)NLM27441516X 
035 |a (NLM)28767363 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yong, Hongwei  |e verfasserin  |4 aut 
245 1 0 |a Robust Online Matrix Factorization for Dynamic Background Subtraction 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2019 
500 |a Date Revised 05.04.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose an effective online background subtraction method, which can be robustly applied to practical videos that have variations in both foreground and background. Different from previous methods which often model the foreground as Gaussian or Laplacian distributions, we model the foreground for each frame with a specific mixture of Gaussians (MoG) distribution, which is updated online frame by frame. Particularly, our MoG model in each frame is regularized by the learned foreground/background knowledge in previous frames. This makes our online MoG model highly robust, stable and adaptive to practical foreground and background variations. The proposed model can be formulated as a concise probabilistic MAP model, which can be readily solved by EM algorithm. We further embed an affine transformation operator into the proposed model, which can be automatically adjusted to fit a wide range of video background transformations and make the method more robust to camera movements. With using the sub-sampling technique, the proposed method can be accelerated to execute more than 250 frames per second on average, meeting the requirement of real-time background subtraction for practical video processing tasks. The superiority of the proposed method is substantiated by extensive experiments implemented on synthetic and real videos, as compared with state-of-the-art online and offline background subtraction methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Meng, Deyu  |e verfasserin  |4 aut 
700 1 |a Zuo, Wangmeng  |e verfasserin  |4 aut 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
700 1 |a Hongwei Yong  |e verfasserin  |4 aut 
700 1 |a Deyu Meng  |e verfasserin  |4 aut 
700 1 |a Wangmeng Zuo  |e verfasserin  |4 aut 
700 1 |a Lei Zhang  |e verfasserin  |4 aut 
700 1 |a Zhang, Lei  |e verfasserin  |4 aut 
700 1 |a Zuo, Wangmeng  |e verfasserin  |4 aut 
700 1 |a Meng, Deyu  |e verfasserin  |4 aut 
700 1 |a Yong, Hongwei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 7 vom: 03. Juli, Seite 1726-1740  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:7  |g day:03  |g month:07  |g pages:1726-1740 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2732350  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 7  |b 03  |c 07  |h 1726-1740