Optimization of combined in-vessel composting process and chemical oxidation for remediation of bottom sludge of crude oil storage tanks

In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H2O2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - 39(2018), 20 vom: 01. Okt., Seite 2597-2603
1. Verfasser: Koolivand, Ali (VerfasserIn)
Weitere Verfasser: Naddafi, Kazem, Nabizadeh, Ramin, Saeedi, Reza
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article Remediation bottom sludge chemical oxidation crude oil storage tanks in-vessel composting Petroleum Sewage Soil Hydrogen Peroxide BBX060AN9V
Beschreibung
Zusammenfassung:In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H2O2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the optimum state of the oxidation process. Then, the determined optimum ratios of the sludge to immature compost were composted at a C:N:P ratio of 100:5:1 and moisture content of 55% for a period of 10 weeks. Finally, both pre-treated and composted mixtures were again oxidized with the optimum conditions of the oxidants. Results showed that total petroleum hydrocarbons (TPH) removal of the 1:8 and 1:10 composting reactors which were pre-treated with H2O2 were 88.34% and 90.4%, respectively. In addition, reduction of TPH in 1:8 and 1:10 composting reactors which were pre-treated with Fenton were 83.90% and 84.40%, respectively. Without applying the pre-treatment step, the composting reactors had a removal rate of about 80%. Therefore, pre-treatment of the reactors increased the TPH removal. However, post-oxidation of both pre-treated and composted mixtures reduced only 13-16% of TPH. Based on the results, remarkable overall removal of TPH (about 99%) was achieved by using chemical oxidation and subsequent composting process. The study showed that chemical oxidation with H2O2 followed by in-vessel composting is a viable choice for the remediation of the sludge
Beschreibung:Date Completed 09.09.2019
Date Revised 09.09.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1479-487X
DOI:10.1080/09593330.2017.1362037