Universal Nanopatterning Technique Combining Secondary Sputtering with Nanoscale Electroplating for Fabricating Size-Controllable Ultrahigh-Resolution Nanostructures
Here, we describe a next-generation lithographic technique for fabricating ultrahigh-resolution nanostructures. This technique makes use of the secondary sputtering phenomenon of plasma ion etching and of nanoscale electroplating to finely control the resolution of the fabricated structures from ten...
| Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 33(2017), 33 vom: 22. Aug., Seite 8260-8266 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2017
|
| Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
| Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
| Zusammenfassung: | Here, we describe a next-generation lithographic technique for fabricating ultrahigh-resolution nanostructures. This technique makes use of the secondary sputtering phenomenon of plasma ion etching and of nanoscale electroplating to finely control the resolution of the fabricated structures from ten nanometers to hundreds of nanometers from a single microsized master pattern. In contrast to previously described techniques that incorporate a recently developed secondary sputtering lithography (SSL) patterning approach, which could only yield 10 nm-resolution structures, in the current technique, we used an improved SSL approach to produce various-sized, high-resolution structures. Additionally, this improved SSL approach was used to fabricate size-controllable 3D patterns on various types of substrates, in particular, a silicon wafer, transparent glass, and flexible polycarbonate (PC) film. Thus, this method can serve as a new-concept patterning method for the efficient mass production of ultrahigh-resolution nanostructures |
|---|---|
| Beschreibung: | Date Completed 23.07.2018 Date Revised 23.07.2018 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
| ISSN: | 1520-5827 |
| DOI: | 10.1021/acs.langmuir.7b00950 |