Point Light Source Position Estimation From RGB-D Images by Learning Surface Attributes

Light source position (LSP) estimation is a difficult yet an important problem in computer vision. A common approach for estimating the LSP assumes Lambert's law. However, in real-world scenes, Lambert's law does not hold for all different types of surfaces. Instead of assuming all that su...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 11 vom: 27. Nov., Seite 5149-5159
1. Verfasser: Karaoglu, Sezer (VerfasserIn)
Weitere Verfasser: Yang Liu, Gevers, Theo, Smeulders, Arnold W M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM274238977
003 DE-627
005 20231225003035.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2731619  |2 doi 
028 5 2 |a pubmed24n0914.xml 
035 |a (DE-627)NLM274238977 
035 |a (NLM)28749351 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Karaoglu, Sezer  |e verfasserin  |4 aut 
245 1 0 |a Point Light Source Position Estimation From RGB-D Images by Learning Surface Attributes 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Light source position (LSP) estimation is a difficult yet an important problem in computer vision. A common approach for estimating the LSP assumes Lambert's law. However, in real-world scenes, Lambert's law does not hold for all different types of surfaces. Instead of assuming all that surfaces follow Lambert's law, our approach classifies image surface segments based on their photometric and geometric surface attributes (i.e. glossy, matte, curved, and so on) and assigns weights to image surface segments based on their suitability for LSP estimation. In addition, we propose the use of the estimated camera pose to globally constrain LSP for RGB-D video sequences. Experiments on Boom and a newly collected RGB-D video data sets show that the state-of-the-art methods are outperformed by the proposed method. The results demonstrate that weighting image surface segments based on their attributes outperform the state-of-the-art methods in which the image surface segments are considered to equally contribute. In particular, by using the proposed surface weighting, the angular error for LSP estimation is reduced from 12.6° to 8.2° and 24.6° to 4.8° for Boom and RGB-D video data sets, respectively. Moreover, using the camera pose to globally constrain LSP provides higher accuracy (4.8°) compared with using single frames (8.5°) 
650 4 |a Journal Article 
700 1 |a Yang Liu  |e verfasserin  |4 aut 
700 1 |a Gevers, Theo  |e verfasserin  |4 aut 
700 1 |a Smeulders, Arnold W M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 11 vom: 27. Nov., Seite 5149-5159  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:11  |g day:27  |g month:11  |g pages:5149-5159 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2731619  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 11  |b 27  |c 11  |h 5149-5159