Extensive Benchmark and Survey of Modeling Methods for Scene Background Initialization

Scene background initialization is the process by which a method tries to recover the background image of a video without foreground objects in it. Having a clear understanding about which approach is more robust and/or more suited to a given scenario is of great interest to many end users or practi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 11 vom: 27. Nov., Seite 5244-5256
1. Verfasser: Jodoin, Pierre-Marc (VerfasserIn)
Weitere Verfasser: Maddalena, Lucia, Petrosino, Alfredo, Yi Wang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM274238934
003 DE-627
005 20250222011906.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2728181  |2 doi 
028 5 2 |a pubmed25n0914.xml 
035 |a (DE-627)NLM274238934 
035 |a (NLM)28749349 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jodoin, Pierre-Marc  |e verfasserin  |4 aut 
245 1 0 |a Extensive Benchmark and Survey of Modeling Methods for Scene Background Initialization 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Scene background initialization is the process by which a method tries to recover the background image of a video without foreground objects in it. Having a clear understanding about which approach is more robust and/or more suited to a given scenario is of great interest to many end users or practitioners. The aim of this paper is to provide an extensive survey of scene background initialization methods as well as a novel benchmarking framework. The proposed framework involves several evaluation metrics and state-of-the-art methods, as well as the largest video data set ever made for this purpose. The data set consists of several camera-captured videos that: 1) span categories focused on various background initialization challenges; 2) are obtained with different cameras of different lengths, frame rates, spatial resolutions, lighting conditions, and levels of compression; and 3) contain indoor and outdoor scenes. The wide variety of our data set prevents our analysis from favoring a certain family of background initialization methods over others. Our evaluation framework allows us to quantitatively identify solved and unsolved issues related to scene background initialization. We also identify scenarios for which state-of-the-art methods systematically fail 
650 4 |a Journal Article 
700 1 |a Maddalena, Lucia  |e verfasserin  |4 aut 
700 1 |a Petrosino, Alfredo  |e verfasserin  |4 aut 
700 1 |a Yi Wang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 11 vom: 27. Nov., Seite 5244-5256  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:26  |g year:2017  |g number:11  |g day:27  |g month:11  |g pages:5244-5256 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2728181  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 11  |b 27  |c 11  |h 5244-5256