Direct quantitative evaluation of disease symptoms on living plant leaves growing under natural light

Leaf color is an important indicator when evaluating plant growth and responses to biotic/abiotic stress. Acquisition of images by digital cameras allows analysis and long-term storage of the acquired images. However, under field conditions, where light intensity can fluctuate and other factors (sha...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Breeding science. - 1998. - 67(2017), 3 vom: 25. Juni, Seite 316-319
1. Verfasser: Matsunaga, Tomoko M (VerfasserIn)
Weitere Verfasser: Ogawa, Daisuke, Taguchi-Shiobara, Fumio, Ishimoto, Masao, Matsunaga, Sachihiro, Habu, Yoshiki
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Breeding science
Schlagworte:Journal Article disease symptom field and greenhouse image analysis plant leaf color
LEADER 01000caa a22002652 4500
001 NLM274188821
003 DE-627
005 20250222010656.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1270/jsbbs.16169  |2 doi 
028 5 2 |a pubmed25n0913.xml 
035 |a (DE-627)NLM274188821 
035 |a (NLM)28744185 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Matsunaga, Tomoko M  |e verfasserin  |4 aut 
245 1 0 |a Direct quantitative evaluation of disease symptoms on living plant leaves growing under natural light 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Leaf color is an important indicator when evaluating plant growth and responses to biotic/abiotic stress. Acquisition of images by digital cameras allows analysis and long-term storage of the acquired images. However, under field conditions, where light intensity can fluctuate and other factors (shade, reflection, and background, etc.) vary, stable and reproducible measurement and quantification of leaf color are hard to achieve. Digital scanners provide fixed conditions for obtaining image data, allowing stable and reliable comparison among samples, but require detached plant materials to capture images, and the destructive processes involved often induce deformation of plant materials (curled leaves and faded colors, etc.). In this study, by using a lightweight digital scanner connected to a mobile computer, we obtained digital image data from intact plant leaves grown in natural-light greenhouses without detaching the targets. We took images of soybean leaves infected by Xanthomonas campestris pv. glycines, and distinctively quantified two disease symptoms (brown lesions and yellow halos) using freely available image processing software. The image data were amenable to quantitative and statistical analyses, allowing precise and objective evaluation of disease resistance 
650 4 |a Journal Article 
650 4 |a disease symptom 
650 4 |a field and greenhouse 
650 4 |a image analysis 
650 4 |a plant leaf color 
700 1 |a Ogawa, Daisuke  |e verfasserin  |4 aut 
700 1 |a Taguchi-Shiobara, Fumio  |e verfasserin  |4 aut 
700 1 |a Ishimoto, Masao  |e verfasserin  |4 aut 
700 1 |a Matsunaga, Sachihiro  |e verfasserin  |4 aut 
700 1 |a Habu, Yoshiki  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Breeding science  |d 1998  |g 67(2017), 3 vom: 25. Juni, Seite 316-319  |w (DE-627)NLM098238299  |x 1344-7610  |7 nnns 
773 1 8 |g volume:67  |g year:2017  |g number:3  |g day:25  |g month:06  |g pages:316-319 
856 4 0 |u http://dx.doi.org/10.1270/jsbbs.16169  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 67  |j 2017  |e 3  |b 25  |c 06  |h 316-319