Study of Temporal Effects on Subjective Video Quality of Experience

HTTP adaptive streaming is being increasingly deployed by network content providers, such as Netflix and YouTube. By dividing video content into data chunks encoded at different bitrates, a client is able to request the appropriate bitrate for the segment to be played next based on the estimated net...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 11 vom: 25. Nov., Seite 5217-5231
1. Verfasser: Bampis, Christos George (VerfasserIn)
Weitere Verfasser: Zhi Li, Moorthy, Anush Krishna, Katsavounidis, Ioannis, Aaron, Anne, Bovik, Alan Conrad
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM274168014
003 DE-627
005 20231225002858.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2729891  |2 doi 
028 5 2 |a pubmed24n0913.xml 
035 |a (DE-627)NLM274168014 
035 |a (NLM)28742036 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bampis, Christos George  |e verfasserin  |4 aut 
245 1 0 |a Study of Temporal Effects on Subjective Video Quality of Experience 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a HTTP adaptive streaming is being increasingly deployed by network content providers, such as Netflix and YouTube. By dividing video content into data chunks encoded at different bitrates, a client is able to request the appropriate bitrate for the segment to be played next based on the estimated network conditions. However, this can introduce a number of impairments, including compression artifacts and rebuffering events, which can severely impact an end-user's quality of experience (QoE). We have recently created a new video quality database, which simulates a typical video streaming application, using long video sequences and interesting Netflix content. Going beyond previous efforts, the new database contains highly diverse and contemporary content, and it includes the subjective opinions of a sizable number of human subjects regarding the effects on QoE of both rebuffering and compression distortions. We observed that rebuffering is always obvious and unpleasant to subjects, while bitrate changes may be less obvious due to content-related dependencies. Transient bitrate drops were preferable over rebuffering only on low complexity video content, while consistently low bitrates were poorly tolerated. We evaluated different objective video quality assessment algorithms on our database and found that objective video quality models are unreliable for QoE prediction on videos suffering from both rebuffering events and bitrate changes. This implies the need for more general QoE models that take into account objective quality models, rebuffering-aware information, and memory. The publicly available video content as well as metadata for all of the videos in the new database can be found at http://live.ece.utexas.edu/research/LIVE_NFLXStudy/nflx_index.html 
650 4 |a Journal Article 
700 1 |a Zhi Li  |e verfasserin  |4 aut 
700 1 |a Moorthy, Anush Krishna  |e verfasserin  |4 aut 
700 1 |a Katsavounidis, Ioannis  |e verfasserin  |4 aut 
700 1 |a Aaron, Anne  |e verfasserin  |4 aut 
700 1 |a Bovik, Alan Conrad  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 11 vom: 25. Nov., Seite 5217-5231  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:11  |g day:25  |g month:11  |g pages:5217-5231 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2729891  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 11  |b 25  |c 11  |h 5217-5231