|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM274167972 |
003 |
DE-627 |
005 |
20231225002858.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TVCG.2017.2730202
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0913.xml
|
035 |
|
|
|a (DE-627)NLM274167972
|
035 |
|
|
|a (NLM)28742040
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Koschier, Dan
|e verfasserin
|4 aut
|
245 |
1 |
3 |
|a An hp-Adaptive Discretization Algorithm for Signed Distance Field Generation
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.11.2018
|
500 |
|
|
|a Date Revised 23.11.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a In this paper we present an hp-adaptive algorithm to generate discrete higher-order polynomial Signed Distance Fields (SDFs) on axis-aligned hexahedral grids from manifold polygonal input meshes. Using an orthonormal polynomial basis, we efficiently fit the polynomials to the underlying signed distance function on each cell. The proposed error-driven construction algorithm is globally adaptive and iteratively refines the SDFs using either spatial subdivision ( h-refinement) following an octree scheme or by cell-wise adaption of the polynomial approximation's degree ( p-refinement). We further introduce a novel decision criterion based on an error-estimator in order to decide whether to apply p- or h-refinement. We demonstrate that our method is able to construct more accurate SDFs at significantly lower memory consumption compared to previous approaches. While the cell-wise polynomial approximation will result in highly accurate SDFs, it can not be guaranteed that the piecewise approximation is continuous over cell interfaces. Therefore, we propose an optimization-based post-processing step in order to weakly enforce continuity. Finally, we apply our generated SDFs as collision detector to the physically-based simulation of geometrically highly complex solid objects in order to demonstrate the practical relevance and applicability of our method
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Deul, Crispin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Brand, Magnus
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bender, Jan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g 23(2017), 10 vom: 25. Okt., Seite 2208-2221
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnns
|
773 |
1 |
8 |
|g volume:23
|g year:2017
|g number:10
|g day:25
|g month:10
|g pages:2208-2221
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2017.2730202
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 23
|j 2017
|e 10
|b 25
|c 10
|h 2208-2221
|