Mixture of autoregressive modeling orders and its implication on single trial EEG classification

Autoregressive (AR) models are of commonly utilized feature types in Electroencephalogram (EEG) studies due to offering better resolution, smoother spectra and being applicable to short segments of data. Identifying correct AR's modeling order is an open challenge. Lower model orders poorly rep...

Description complète

Détails bibliographiques
Publié dans:Expert systems with applications. - 1999. - 65(2016) vom: 15. Dez., Seite 164-180
Auteur principal: Atyabi, Adham (Auteur)
Autres auteurs: Shic, Frederick, Naples, Adam
Format: Article en ligne
Langue:English
Publié: 2016
Accès à la collection:Expert systems with applications
Sujets:Journal Article Autoregressive analysis Electroencephalogram Genetic algorithm Particle Swarm Optimization