Extremely Low Density and Super-Compressible Graphene Cellular Materials

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 36 vom: 20. Sept.
1. Verfasser: Qiu, Ling (VerfasserIn)
Weitere Verfasser: Huang, Bing, He, Zijun, Wang, Yuanyuan, Tian, Zhiming, Liu, Jefferson Zhe, Wang, Kun, Song, Jingchao, Gengenbach, Thomas R, Li, Dan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article aerogels elastomers extremely low density graphene super-compressible
LEADER 01000caa a22002652 4500
001 NLM274062488
003 DE-627
005 20250222003349.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201701553  |2 doi 
028 5 2 |a pubmed25n0913.xml 
035 |a (DE-627)NLM274062488 
035 |a (NLM)28731224 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qiu, Ling  |e verfasserin  |4 aut 
245 1 0 |a Extremely Low Density and Super-Compressible Graphene Cellular Materials 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2018 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Development of extremely low density graphene elastomer (GE) holds the potential to enable new properties that traditional cellular materials cannot offer, which are promising for a range of emerging applications, ranging from flexible electronics to multifunctional scaffolds. However, existing graphene foams with extremely low density are generally found to have very poor mechanical resilience. It is scientifically intriguing but remains unresolved whether and how the density limit of this class of cellular materials can be further pushed down while their mechanical resilience is being retained. In this work, a simple annealing strategy is developed to investigate the role of intersheet interactions in the formation of extreme-low-density of graphene-based cellular materials. It is discovered that the density limit of mechanically resilient cellular GEs can be further pushed down as low as 0.16 mg cm-3 through thermal annealing. The resultant extremely low density GEs reveal a range of unprecedented properties, including complete recovery from 98% compression in both of liquid and air, ultrahigh solvent adsorption capacity, ultrahigh pressure sensitivity, and light transmittance 
650 4 |a Journal Article 
650 4 |a aerogels 
650 4 |a elastomers 
650 4 |a extremely low density 
650 4 |a graphene 
650 4 |a super-compressible 
700 1 |a Huang, Bing  |e verfasserin  |4 aut 
700 1 |a He, Zijun  |e verfasserin  |4 aut 
700 1 |a Wang, Yuanyuan  |e verfasserin  |4 aut 
700 1 |a Tian, Zhiming  |e verfasserin  |4 aut 
700 1 |a Liu, Jefferson Zhe  |e verfasserin  |4 aut 
700 1 |a Wang, Kun  |e verfasserin  |4 aut 
700 1 |a Song, Jingchao  |e verfasserin  |4 aut 
700 1 |a Gengenbach, Thomas R  |e verfasserin  |4 aut 
700 1 |a Li, Dan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 29(2017), 36 vom: 20. Sept.  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:36  |g day:20  |g month:09 
856 4 0 |u http://dx.doi.org/10.1002/adma.201701553  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 36  |b 20  |c 09