|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM273977954 |
003 |
DE-627 |
005 |
20231225002444.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.13823
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0913.xml
|
035 |
|
|
|a (DE-627)NLM273977954
|
035 |
|
|
|a (NLM)28722275
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Anav, Alessandro
|e verfasserin
|4 aut
|
245 |
1 |
4 |
|a The role of plant phenology in stomatal ozone flux modeling
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 10.10.2018
|
500 |
|
|
|a Date Revised 10.10.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2017 John Wiley & Sons Ltd.
|
520 |
|
|
|a Plant phenology plays a pivotal role in the climate system as it regulates the gas exchange between the biosphere and the atmosphere. The uptake of ozone by forest is estimated through several meteorological variables and a specific function describing the beginning and the termination of plant growing season; actually, in many risk assessment studies, this function is based on a simple latitude and topography model. In this study, using two satellite datasets, we apply and compare six methods to estimate the start and the end dates of the growing season across a large region covering all Europe for the year 2011. Results show a large variability between the green-up and dormancy dates estimated using the six different methods, with differences greater than one month. However, interestingly, all the methods display a common spatial pattern in the uptake of ozone by forests with a marked change in the magnitude, up to 1.9 TgO3 /year, and corresponding to a difference of 25% in the amount of ozone that enters the leaves. Our results indicate that improved estimates of ozone fluxes require a better representation of plant phenology in the models used for O3 risk assessment
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a dormancy date
|
650 |
|
4 |
|a green-up date
|
650 |
|
4 |
|a ozone
|
650 |
|
4 |
|a phytotoxic ozone dose
|
650 |
|
4 |
|a risk assessment
|
650 |
|
4 |
|a stomatal conductance
|
650 |
|
7 |
|a Ozone
|2 NLM
|
650 |
|
7 |
|a 66H7ZZK23N
|2 NLM
|
700 |
1 |
|
|a Liu, Qiang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a De Marco, Alessandra
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Proietti, Chiara
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Savi, Flavia
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Paoletti, Elena
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Piao, Shilong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 24(2018), 1 vom: 19. Jan., Seite 235-248
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:24
|g year:2018
|g number:1
|g day:19
|g month:01
|g pages:235-248
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.13823
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 24
|j 2018
|e 1
|b 19
|c 01
|h 235-248
|