High-Performance Polymers Sandwiched with Chemical Vapor Deposited Hexagonal Boron Nitrides as Scalable High-Temperature Dielectric Materials
© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 35 vom: 01. Sept. |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2017
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article 2D materials chemical vapor deposition dielectrics electrical energy storage high temperature |
Zusammenfassung: | © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Polymer dielectrics are the preferred materials of choice for power electronics and pulsed power applications. However, their relatively low operating temperatures significantly limit their uses in harsh-environment energy storage devices, e.g., automobile and aerospace power systems. Herein, hexagonal boron nitride (h-BN) films are prepared from chemical vapor deposition (CVD) and readily transferred onto polyetherimide (PEI) films. Greatly improved performance in terms of discharged energy density and charge-discharge efficiency is achieved in the PEI sandwiched with CVD-grown h-BN films at elevated temperatures when compared to neat PEI films and other high-temperature polymer and nanocomposite dielectrics. Notably, the h-BN-coated PEI films are capable of operating with >90% charge-discharge efficiencies and delivering high energy densities, i.e., 1.2 J cm-3 , even at a temperature close to the glass transition temperature of polymer (i.e., 217 °C) where pristine PEI almost fails. Outstanding cyclability and dielectric stability over a straight 55 000 charge-discharge cycles are demonstrated in the h-BN-coated PEI at high temperatures. The work demonstrates a general and scalable pathway to enable the high-temperature capacitive energy applications of a wide range of engineering polymers and also offers an efficient method for the synthesis and transfer of 2D nanomaterials at the scale demanded for applications |
---|---|
Beschreibung: | Date Completed 18.07.2018 Date Revised 01.10.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201701864 |