|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM273844105 |
003 |
DE-627 |
005 |
20231225002139.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2017.204
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0912.xml
|
035 |
|
|
|a (DE-627)NLM273844105
|
035 |
|
|
|a (NLM)28708624
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Min, Xiaobo
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.01.2018
|
500 |
|
|
|a Date Revised 17.03.2022
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Arsenic is one of the major pollutants and a worldwide concern because of its toxicity and chronic effects on human health. An adsorbent of Fe-FeS2 mixture for effective arsenic removal was successfully prepared by mechanical ball milling. The products before and after arsenic adsorption were characterized with scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorbent shows high arsenic removal efficiency when molar ratio of iron to pyrite is 5:5. The experimental data of As(III) adsorption are fitted well with the Langmuir isotherm model with a maximal adsorption capacity of 101.123 mg/g. And As(V) data were described perfectly by the Freundlich model with a maximal adsorption capacity of 58.341 L/mg. As(III) is partial oxidized to As(V) during the adsorption process. High arsenic uptake capability and cost-effectiveness of waste make it potentially attractive for arsenic removal
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Sulfides
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a pyrite
|2 NLM
|
650 |
|
7 |
|a 132N09W4PR
|2 NLM
|
650 |
|
7 |
|a Iron
|2 NLM
|
650 |
|
7 |
|a E1UOL152H7
|2 NLM
|
650 |
|
7 |
|a Arsenic
|2 NLM
|
650 |
|
7 |
|a N712M78A8G
|2 NLM
|
700 |
1 |
|
|a Li, Yangwenjun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ke, Yong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shi, Meiqing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chai, Liyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xue, Ke
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 76(2017), 1-2 vom: 16. Juli, Seite 192-200
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:76
|g year:2017
|g number:1-2
|g day:16
|g month:07
|g pages:192-200
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2017.204
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 76
|j 2017
|e 1-2
|b 16
|c 07
|h 192-200
|