Solar radiation (PAR, UV-A, UV-B) penetration in a shallow maturation pond operating in a tropical climate

Solar radiation is considered the primary route for disinfection of pathogenic bacteria in maturation ponds. There is scarce information on depth profiling and attenuation of photosynthetically active radiation (PAR), UV-A and UV-B in shallow maturation ponds operating in tropical climates. Measurem...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 76(2017), 1-2 vom: 16. Juli, Seite 182-191
1. Verfasser: Dias, Daniel F C (VerfasserIn)
Weitere Verfasser: von Sperling, Marcos
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Evaluation Study Journal Article
Beschreibung
Zusammenfassung:Solar radiation is considered the primary route for disinfection of pathogenic bacteria in maturation ponds. There is scarce information on depth profiling and attenuation of photosynthetically active radiation (PAR), UV-A and UV-B in shallow maturation ponds operating in tropical climates. Measurements of solar irradiance of the three wavelength ranges, together with turbidity, have been acquired from different depths for over 1 year in a shallow maturation pond (44 cm of depth) operating in Brazil. UV-A and UV-B were still detected at 10 cm from the surface, but from 15 cm both were undetectable. PAR was still detected at 30 cm of depth. Irradiation attenuation showed to be related to turbidity. Attenuation coefficients were calculated and simple models without turbidity (traditional structure) or including log10 of turbidity are proposed for predicting PAR irradiance attenuation as a function of depth
Beschreibung:Date Completed 11.01.2018
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2017.203