Distance Metric Learning via Iterated Support Vector Machines

Distance metric learning aims to learn from the given training data a valid distance metric, with which the similarity between data samples can be more effectively evaluated for classification. Metric learning is often formulated as a convex or nonconvex optimization problem, while most existing met...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 10 vom: 15. Okt., Seite 4937-4950
1. Verfasser: Wangmeng Zuo (VerfasserIn)
Weitere Verfasser: Faqiang Wang, Zhang, David, Liang Lin, Yuchi Huang, Deyu Meng, Lei Zhang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM273843656
003 DE-627
005 20231225002138.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2725578  |2 doi 
028 5 2 |a pubmed24n0912.xml 
035 |a (DE-627)NLM273843656 
035 |a (NLM)28708554 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wangmeng Zuo  |e verfasserin  |4 aut 
245 1 0 |a Distance Metric Learning via Iterated Support Vector Machines 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Distance metric learning aims to learn from the given training data a valid distance metric, with which the similarity between data samples can be more effectively evaluated for classification. Metric learning is often formulated as a convex or nonconvex optimization problem, while most existing methods are based on customized optimizers and become inefficient for large scale problems. In this paper, we formulate metric learning as a kernel classification problem with the positive semi-definite constraint, and solve it by iterated training of support vector machines (SVMs). The new formulation is easy to implement and efficient in training with the off-the-shelf SVM solvers. Two novel metric learning models, namely positive-semidefinite constrained metric learning (PCML) and nonnegative-coefficient constrained metric learning (NCML), are developed. Both PCML and NCML can guarantee the global optimality of their solutions. Experiments are conducted on general classification, face verification, and person re-identification to evaluate our methods. Compared with the state-of-the-art approaches, our methods can achieve comparable classification accuracy and are efficient in training 
650 4 |a Journal Article 
700 1 |a Faqiang Wang  |e verfasserin  |4 aut 
700 1 |a Zhang, David  |e verfasserin  |4 aut 
700 1 |a Liang Lin  |e verfasserin  |4 aut 
700 1 |a Yuchi Huang  |e verfasserin  |4 aut 
700 1 |a Deyu Meng  |e verfasserin  |4 aut 
700 1 |a Lei Zhang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 10 vom: 15. Okt., Seite 4937-4950  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:10  |g day:15  |g month:10  |g pages:4937-4950 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2725578  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 10  |b 15  |c 10  |h 4937-4950