Dense 3D Face Correspondence

We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 7 vom: 15. Juli, Seite 1584-1598
1. Verfasser: Gilani, Syed Zulqarnain (VerfasserIn)
Weitere Verfasser: Mian, Ajmal, Shafait, Faisal, Reid, Ian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM273843567
003 DE-627
005 20250221233744.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2725279  |2 doi 
028 5 2 |a pubmed25n0912.xml 
035 |a (DE-627)NLM273843567 
035 |a (NLM)28708544 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gilani, Syed Zulqarnain  |e verfasserin  |4 aut 
245 1 0 |a Dense 3D Face Correspondence 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.08.2019 
500 |a Date Revised 01.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We present an algorithm that automatically establishes dense correspondences between a large number of 3D faces. Starting from automatically detected sparse correspondences on the outer boundary of 3D faces, the algorithm triangulates existing correspondences and expands them iteratively by matching points of distinctive surface curvature along the triangle edges. After exhausting keypoint matches, further correspondences are established by generating evenly distributed points within triangles by evolving level set geodesic curves from the centroids of large triangles. A deformable model (K3DM) is constructed from the dense corresponded faces and an algorithm is proposed for morphing the K3DM to fit unseen faces. This algorithm iterates between rigid alignment of an unseen face followed by regularized morphing of the deformable model. We have extensively evaluated the proposed algorithms on synthetic data and real 3D faces from the FRGCv2, Bosphorus, BU3DFE and UND Ear databases using quantitative and qualitative benchmarks. Our algorithm achieved dense correspondences with a mean localisation error of 1.28 mm on synthetic faces and detected 14 anthropometric landmarks on unseen real faces from the FRGCv2 database with 3 mm precision. Furthermore, our deformable model fitting algorithm achieved 98.5 percent face recognition accuracy on the FRGCv2 and 98.6 percent on Bosphorus database. Our dense model is also able to generalize to unseen datasets 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Mian, Ajmal  |e verfasserin  |4 aut 
700 1 |a Shafait, Faisal  |e verfasserin  |4 aut 
700 1 |a Reid, Ian  |e verfasserin  |4 aut 
700 1 |a Gilani, Syed Zulqarnain  |e verfasserin  |4 aut 
700 1 |a Mian, Ajmal  |e verfasserin  |4 aut 
700 1 |a Shafait, Faisal  |e verfasserin  |4 aut 
700 1 |a Reid, Ian  |e verfasserin  |4 aut 
700 1 |a Shafait, Faisal  |e verfasserin  |4 aut 
700 1 |a Gilani, Syed Zulqarnain  |e verfasserin  |4 aut 
700 1 |a Mian, Ajmal  |e verfasserin  |4 aut 
700 1 |a Reid, Ian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 7 vom: 15. Juli, Seite 1584-1598  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:7  |g day:15  |g month:07  |g pages:1584-1598 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2725279  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 7  |b 15  |c 07  |h 1584-1598