Multi-Gait Recognition Based on Attribute Discovery

Gait recognition is an important topic in biometrics. Current works primarily focus on recognizing a single person's walking gait. However, a person's gait will change when they walk with other people. How to recognize the gait of multiple people walking is still a challenging problem. Thi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 7 vom: 15. Juli, Seite 1697-1710
1. Verfasser: Chen, Xin (VerfasserIn)
Weitere Verfasser: Weng, Jian, Lu, Wei, Xu, Jiaming, Xin Chen, Jian Weng, Wei Lu, Jiaming Xu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM273843559
003 DE-627
005 20231225002138.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2726061  |2 doi 
028 5 2 |a pubmed24n0912.xml 
035 |a (DE-627)NLM273843559 
035 |a (NLM)28708545 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Xin  |e verfasserin  |4 aut 
245 1 0 |a Multi-Gait Recognition Based on Attribute Discovery 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.08.2019 
500 |a Date Revised 01.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Gait recognition is an important topic in biometrics. Current works primarily focus on recognizing a single person's walking gait. However, a person's gait will change when they walk with other people. How to recognize the gait of multiple people walking is still a challenging problem. This paper proposes an attribute discovery model in a max-margin framework to recognize a person based on gait while walking with multiple people. First, human graphlets are integrated into a tracking-by-detection method to obtain a person's complete silhouette. Then, stable and discriminative attributes are developed using a latent conditional random field (L-CRF) model. The model is trained in the latent structural support vector machine (SVM) framework, in which a new constraint is added to improve the multi-gait recognition performance. In the recognition process, the attribute set of each person is detected by inferring on the trained L-CRF model. Finally, attributes based on dense trajectories are extracted as the final gait features to complete the recognition. The experimental results demonstrate that the proposed method achieves better recognition performance than traditional gait recognition methods under the condition of multiple people walking together 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Weng, Jian  |e verfasserin  |4 aut 
700 1 |a Lu, Wei  |e verfasserin  |4 aut 
700 1 |a Xu, Jiaming  |e verfasserin  |4 aut 
700 1 |a Xin Chen  |e verfasserin  |4 aut 
700 1 |a Jian Weng  |e verfasserin  |4 aut 
700 1 |a Wei Lu  |e verfasserin  |4 aut 
700 1 |a Jiaming Xu  |e verfasserin  |4 aut 
700 1 |a Weng, Jian  |e verfasserin  |4 aut 
700 1 |a Chen, Xin  |e verfasserin  |4 aut 
700 1 |a Xu, Jiaming  |e verfasserin  |4 aut 
700 1 |a Lu, Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 7 vom: 15. Juli, Seite 1697-1710  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:7  |g day:15  |g month:07  |g pages:1697-1710 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2726061  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 7  |b 15  |c 07  |h 1697-1710