Proposal Flow : Semantic Correspondences from Object Proposals

Finding image correspondences remains a challenging problem in the presence of intra-class variations and large changes in scene layout. Semantic flow methods are designed to handle images depicting different instances of the same object or scene category. We introduce a novel approach to semantic f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 7 vom: 15. Juli, Seite 1711-1725
1. Verfasser: Ham, Bumsub (VerfasserIn)
Weitere Verfasser: Cho, Minsu, Schmid, Cordelia, Ponce, Jean, Minsu Cho
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM273843540
003 DE-627
005 20231225002138.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2724510  |2 doi 
028 5 2 |a pubmed24n0912.xml 
035 |a (DE-627)NLM273843540 
035 |a (NLM)28708543 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ham, Bumsub  |e verfasserin  |4 aut 
245 1 0 |a Proposal Flow  |b Semantic Correspondences from Object Proposals 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 05.04.2019 
500 |a Date Revised 05.04.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Finding image correspondences remains a challenging problem in the presence of intra-class variations and large changes in scene layout. Semantic flow methods are designed to handle images depicting different instances of the same object or scene category. We introduce a novel approach to semantic flow, dubbed proposal flow, that establishes reliable correspondences using object proposals. Unlike prevailing semantic flow approaches that operate on pixels or regularly sampled local regions, proposal flow benefits from the characteristics of modern object proposals, that exhibit high repeatability at multiple scales, and can take advantage of both local and geometric consistency constraints among proposals. We also show that the corresponding sparse proposal flow can effectively be transformed into a conventional dense flow field. We introduce two new challenging datasets that can be used to evaluate both general semantic flow techniques and region-based approaches such as proposal flow. We use these benchmarks to compare different matching algorithms, object proposals, and region features within proposal flow, to the state of the art in semantic flow. This comparison, along with experiments on standard datasets, demonstrates that proposal flow significantly outperforms existing semantic flow methods in various settings 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Cho, Minsu  |e verfasserin  |4 aut 
700 1 |a Schmid, Cordelia  |e verfasserin  |4 aut 
700 1 |a Ponce, Jean  |e verfasserin  |4 aut 
700 1 |a Ham, Bumsub  |e verfasserin  |4 aut 
700 1 |a Minsu Cho  |e verfasserin  |4 aut 
700 1 |a Schmid, Cordelia  |e verfasserin  |4 aut 
700 1 |a Ponce, Jean  |e verfasserin  |4 aut 
700 1 |a Cho, Minsu  |e verfasserin  |4 aut 
700 1 |a Schmid, Cordelia  |e verfasserin  |4 aut 
700 1 |a Ham, Bumsub  |e verfasserin  |4 aut 
700 1 |a Ponce, Jean  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 7 vom: 15. Juli, Seite 1711-1725  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:7  |g day:15  |g month:07  |g pages:1711-1725 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2724510  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 7  |b 15  |c 07  |h 1711-1725