Multi-Image Blind Super-Resolution of 3D Scenes

We address the problem of estimating the latent high-resolution (HR) image of a 3D scene from a set of non-uniformly motion blurred low-resolution (LR) images captured in the burst mode using a hand-held camera. Existing blind super-resolution (SR) techniques that account for motion blur are restric...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 11 vom: 01. Nov., Seite 5337-5352
1. Verfasser: Punnappurath, Abhijith (VerfasserIn)
Weitere Verfasser: Nimisha, Thekke Madam, Rajagopalan, Ambasamudram Narayanan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM273692984
003 DE-627
005 20231225001820.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2723243  |2 doi 
028 5 2 |a pubmed24n0912.xml 
035 |a (DE-627)NLM273692984 
035 |a (NLM)28692974 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Punnappurath, Abhijith  |e verfasserin  |4 aut 
245 1 0 |a Multi-Image Blind Super-Resolution of 3D Scenes 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 30.07.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We address the problem of estimating the latent high-resolution (HR) image of a 3D scene from a set of non-uniformly motion blurred low-resolution (LR) images captured in the burst mode using a hand-held camera. Existing blind super-resolution (SR) techniques that account for motion blur are restricted to fronto-parallel planar scenes. We initially develop an SR motion blur model to explain the image formation process in 3D scenes. We then use this model to solve for the three unknowns-the camera trajectories, the depth map of the scene, and the latent HR image. We first compute the global HR camera motion corresponding to each LR observation from patches lying on a reference depth layer in the input images. Using the estimated trajectories, we compute the latent HR image and the underlying depth map iteratively using an alternating minimization framework. Experiments on synthetic and real data reveal that our proposed method outperforms the state-of-the-art techniques by a significant margin 
650 4 |a Journal Article 
700 1 |a Nimisha, Thekke Madam  |e verfasserin  |4 aut 
700 1 |a Rajagopalan, Ambasamudram Narayanan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 11 vom: 01. Nov., Seite 5337-5352  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:11  |g day:01  |g month:11  |g pages:5337-5352 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2723243  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 11  |b 01  |c 11  |h 5337-5352