|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM273692844 |
003 |
DE-627 |
005 |
20231225001820.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2018 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2017.2723009
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0912.xml
|
035 |
|
|
|a (DE-627)NLM273692844
|
035 |
|
|
|a (NLM)28692961
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhou, Bolei
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Places
|b A 10 Million Image Database for Scene Recognition
|
264 |
|
1 |
|c 2018
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 04.04.2019
|
500 |
|
|
|a Date Revised 04.04.2019
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach near-human semantic classification performance at tasks such as visual object and scene recognition. Here we describe the Places Database, a repository of 10 million scene photographs, labeled with scene semantic categories, comprising a large and diverse list of the types of environments encountered in the world. Using the state-of-the-art Convolutional Neural Networks (CNNs), we provide scene classification CNNs (Places-CNNs) as baselines, that significantly outperform the previous approaches. Visualization of the CNNs trained on Places shows that object detectors emerge as an intermediate representation of scene classification. With its high-coverage and high-diversity of exemplars, the Places Database along with the Places-CNNs offer a novel resource to guide future progress on scene recognition problems
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Lapedriza, Agata
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Khosla, Aditya
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Oliva, Aude
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Torralba, Antonio
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 40(2018), 6 vom: 01. Juni, Seite 1452-1464
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:40
|g year:2018
|g number:6
|g day:01
|g month:06
|g pages:1452-1464
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2017.2723009
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 40
|j 2018
|e 6
|b 01
|c 06
|h 1452-1464
|