Places : A 10 Million Image Database for Scene Recognition

The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach near-human semantic classification performance at tasks such as visual object and scene recognition. Here we describe the Places Database, a repository of 10 million scene photographs, lab...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 6 vom: 01. Juni, Seite 1452-1464
1. Verfasser: Zhou, Bolei (VerfasserIn)
Weitere Verfasser: Lapedriza, Agata, Khosla, Aditya, Oliva, Aude, Torralba, Antonio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM273692844
003 DE-627
005 20231225001820.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2723009  |2 doi 
028 5 2 |a pubmed24n0912.xml 
035 |a (DE-627)NLM273692844 
035 |a (NLM)28692961 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Bolei  |e verfasserin  |4 aut 
245 1 0 |a Places  |b A 10 Million Image Database for Scene Recognition 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.04.2019 
500 |a Date Revised 04.04.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach near-human semantic classification performance at tasks such as visual object and scene recognition. Here we describe the Places Database, a repository of 10 million scene photographs, labeled with scene semantic categories, comprising a large and diverse list of the types of environments encountered in the world. Using the state-of-the-art Convolutional Neural Networks (CNNs), we provide scene classification CNNs (Places-CNNs) as baselines, that significantly outperform the previous approaches. Visualization of the CNNs trained on Places shows that object detectors emerge as an intermediate representation of scene classification. With its high-coverage and high-diversity of exemplars, the Places Database along with the Places-CNNs offer a novel resource to guide future progress on scene recognition problems 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lapedriza, Agata  |e verfasserin  |4 aut 
700 1 |a Khosla, Aditya  |e verfasserin  |4 aut 
700 1 |a Oliva, Aude  |e verfasserin  |4 aut 
700 1 |a Torralba, Antonio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 6 vom: 01. Juni, Seite 1452-1464  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:6  |g day:01  |g month:06  |g pages:1452-1464 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2723009  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 6  |b 01  |c 06  |h 1452-1464