DeepFix : A Fully Convolutional Neural Network for Predicting Human Eye Fixations

Understanding and predicting the human visual attention mechanism is an active area of research in the fields of neuroscience and computer vision. In this paper, we propose DeepFix, a fully convolutional neural network, which models the bottom-up mechanism of visual attention via saliency prediction...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 9 vom: 01. Sept., Seite 4446-4456
1. Verfasser: Kruthiventi, Srinivas S S (VerfasserIn)
Weitere Verfasser: Ayush, Kumar, Babu, R Venkatesh
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM273692836
003 DE-627
005 20231225001820.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2710620  |2 doi 
028 5 2 |a pubmed24n0912.xml 
035 |a (DE-627)NLM273692836 
035 |a (NLM)28692956 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kruthiventi, Srinivas S S  |e verfasserin  |4 aut 
245 1 0 |a DeepFix  |b A Fully Convolutional Neural Network for Predicting Human Eye Fixations 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.11.2018 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Understanding and predicting the human visual attention mechanism is an active area of research in the fields of neuroscience and computer vision. In this paper, we propose DeepFix, a fully convolutional neural network, which models the bottom-up mechanism of visual attention via saliency prediction. Unlike classical works, which characterize the saliency map using various hand-crafted features, our model automatically learns features in a hierarchical fashion and predicts the saliency map in an end-to-end manner. DeepFix is designed to capture semantics at multiple scales while taking global context into account, by using network layers with very large receptive fields. Generally, fully convolutional nets are spatially invariant-this prevents them from modeling location-dependent patterns (e.g., centre-bias). Our network handles this by incorporating a novel location-biased convolutional layer. We evaluate our model on multiple challenging saliency data sets and show that it achieves the state-of-the-art results 
650 4 |a Journal Article 
700 1 |a Ayush, Kumar  |e verfasserin  |4 aut 
700 1 |a Babu, R Venkatesh  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 9 vom: 01. Sept., Seite 4446-4456  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:9  |g day:01  |g month:09  |g pages:4446-4456 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2710620  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 9  |b 01  |c 09  |h 4446-4456