Volumetric Image Registration From Invariant Keypoints

We present a method for image registration based on 3D scale- and rotation-invariant keypoints. The method extends the scale invariant feature transform (SIFT) to arbitrary dimensions by making key modifications to orientation assignment and gradient histograms. Rotation invariance is proven mathema...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 10 vom: 06. Okt., Seite 4900-4910
1. Verfasser: Rister, Blaine (VerfasserIn)
Weitere Verfasser: Horowitz, Mark A, Rubin, Daniel L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM273588028
003 DE-627
005 20250221223128.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2722689  |2 doi 
028 5 2 |a pubmed25n0911.xml 
035 |a (DE-627)NLM273588028 
035 |a (NLM)28682256 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rister, Blaine  |e verfasserin  |4 aut 
245 1 0 |a Volumetric Image Registration From Invariant Keypoints 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2018 
500 |a Date Revised 06.03.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a method for image registration based on 3D scale- and rotation-invariant keypoints. The method extends the scale invariant feature transform (SIFT) to arbitrary dimensions by making key modifications to orientation assignment and gradient histograms. Rotation invariance is proven mathematically. Additional modifications are made to extrema detection and keypoint matching based on the demands of image registration. Our experiments suggest that the choice of neighborhood in discrete extrema detection has a strong impact on image registration accuracy. In head MR images, the brain is registered to a labeled atlas with an average Dice coefficient of 92%, outperforming registration from mutual information as well as an existing 3D SIFT implementation. In abdominal CT images, the spine is registered with an average error of 4.82 mm. Furthermore, keypoints are matched with high precision in simulated head MR images exhibiting lesions from multiple sclerosis. These results were achieved using only affine transforms, and with no change in parameters across a wide variety of medical images. This paper is freely available as a cross-platform software library 
650 4 |a Journal Article 
700 1 |a Horowitz, Mark A  |e verfasserin  |4 aut 
700 1 |a Rubin, Daniel L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 10 vom: 06. Okt., Seite 4900-4910  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:10  |g day:06  |g month:10  |g pages:4900-4910 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2722689  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 10  |b 06  |c 10  |h 4900-4910