Bilinear Optimized Product Quantization for Scalable Visual Content Analysis

Product quantization (PQ) has been recognized as a useful technique to encode visual feature vectors into compact codes to reduce both the storage and computation cost. Recent advances in retrieval and vision tasks indicate that high-dimensional descriptors are critical to ensuring high accuracy on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 10 vom: 06. Okt., Seite 5057-5069
1. Verfasser: Litao Yu (VerfasserIn)
Weitere Verfasser: Zi Huang, Fumin Shen, Jingkuan Song, Heng Tao Shen, Xiaofang Zhou
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM273587900
003 DE-627
005 20231225001550.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2722224  |2 doi 
028 5 2 |a pubmed24n0911.xml 
035 |a (DE-627)NLM273587900 
035 |a (NLM)28682253 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Litao Yu  |e verfasserin  |4 aut 
245 1 0 |a Bilinear Optimized Product Quantization for Scalable Visual Content Analysis 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Product quantization (PQ) has been recognized as a useful technique to encode visual feature vectors into compact codes to reduce both the storage and computation cost. Recent advances in retrieval and vision tasks indicate that high-dimensional descriptors are critical to ensuring high accuracy on large-scale data sets. However, optimizing PQ codes with high-dimensional data is extremely time-consuming and memory-consuming. To solve this problem, in this paper, we present a novel PQ method based on bilinear projection, which can well exploit the natural data structure and reduce the computational complexity. Specifically, we learn a global bilinear projection for PQ, where we provide both non-parametric and parametric solutions. The non-parametric solution does not need any data distribution assumption. The parametric solution can avoid the problem of local optima caused by random initialization, and enjoys a theoretical error bound. Besides, we further extend this approach by learning locally bilinear projections to fit underlying data distributions. We show by extensive experiments that our proposed method, dubbed bilinear optimization product quantization, achieves competitive retrieval and classification accuracies while having significant lower time and space complexities 
650 4 |a Journal Article 
700 1 |a Zi Huang  |e verfasserin  |4 aut 
700 1 |a Fumin Shen  |e verfasserin  |4 aut 
700 1 |a Jingkuan Song  |e verfasserin  |4 aut 
700 1 |a Heng Tao Shen  |e verfasserin  |4 aut 
700 1 |a Xiaofang Zhou  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 10 vom: 06. Okt., Seite 5057-5069  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:10  |g day:06  |g month:10  |g pages:5057-5069 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2722224  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 10  |b 06  |c 10  |h 5057-5069