Origami Arrays as Substrates for the Determination of Reaction Kinetics Using High-Speed Atomic Force Microscopy

DNA nanostructures (DN) are powerful platforms for the programmable assembly of nanomaterials. As applications for DN both as a structural material and as a support for functional biomolecular sensing systems develop, methods enabling the determination of reaction kinetics in real time become increa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 30 vom: 01. Aug., Seite 7389-7392
1. Verfasser: Rahman, Masudur (VerfasserIn)
Weitere Verfasser: Day, B Scott, Neff, David, Norton, Michael L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:DNA nanostructures (DN) are powerful platforms for the programmable assembly of nanomaterials. As applications for DN both as a structural material and as a support for functional biomolecular sensing systems develop, methods enabling the determination of reaction kinetics in real time become increasingly important. In this report, we present a study of the kinetics of streptavidin binding onto biotinylated DN constructs enabled by these planar structures. High-speed AFM was employed at a 2.5 frame/s rate to evaluate the kinetics and indicates that the binding fully saturates in less than 60 s. When the the data was fitted with an adsorption-limited kinetic model, a forward rate constant of 5.03 × 105 s-1 was found
Beschreibung:Date Completed 23.07.2018
Date Revised 23.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b01556