Nitrogen-doped C60 as a robust catalyst for CO oxidation

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 38(2017), 23 vom: 05. Sept., Seite 2041-2046
1. Verfasser: Lin, I-Hsiang (VerfasserIn)
Weitere Verfasser: Lu, Yu-Huan, Chen, Hsin-Tsung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't CO oxidation Eley-Rideal mechanism first-principles calculations nitrogen-doped C60 fullerene
Beschreibung
Zusammenfassung:© 2017 Wiley Periodicals, Inc.
The O2 activation and CO oxidation on nitrogen-doped C59 N fullerene are investigated using first-principles calculations. The calculations indicate that the C59 N fullerene is able to activate O2 molecules resulting in the formation of superoxide species ( O2-) both kinetically and thermodynamically. The active superoxide can further react with CO to form CO2 via the Eley-Rideal mechanism by passing a stepwise reaction barrier of only 0.20 eV. Ab initio molecular dynamics (AIMD) simulation is carried out to evidence the feasibility of the Eley-Rideal mechanism. In addition, the second CO oxidation takes place with the remaining atomic O without any activation energy barrier. The full catalytic reaction cycles can occur energetically favorable and suggest a two-step Eley-Rideal mechanism for CO oxidation with O2 catalyzed by the C59 N fullerene. The catalytic properties of high percentage nitrogen-doped fullerene (C48 N12 ) is also examined. This work contributes to designing higher effective carbon-based materials catalysts by a dependable theoretical insight into the catalytic properties of the nitrogen-doped fullerene. © 2017 Wiley Periodicals, Inc
Beschreibung:Date Revised 20.11.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1096-987X
DOI:10.1002/jcc.24851