Connecting active to passive fluorescence with photosynthesis : a method for evaluating remote sensing measurements of Chl fluorescence

© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 215(2017), 4 vom: 15. Sept., Seite 1594-1608
1. Verfasser: Magney, Troy S (VerfasserIn)
Weitere Verfasser: Frankenberg, Christian, Fisher, Joshua B, Sun, Ying, North, Gretchen B, Davis, Thomas S, Kornfeld, Ari, Siebke, Katharina
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Chl fluorescence fluorescence spectra gross primary production leaf level photosynthesis pulse-amplitude modulation (PAM) remote sensing solar induced Chl fluorescence (SIF) Soil mehr... Chlorophyll 1406-65-1
Beschreibung
Zusammenfassung:© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view - allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (Fλ , 670-850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, Ft ) and saturation pulses (maximal fluorescence yields, Fm ). Our results suggest that this method can accurately reproduce the full Chl emission spectra - capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ
Beschreibung:Date Completed 15.05.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.14662