Biochar application mode influences nitrogen leaching and NH3 volatilization losses in a rice paddy soil irrigated with N-rich wastewater
Impacts of biochar application mode on nitrogen (N) leaching, ammonia (NH3) volatilization, rice grain yield and N use efficiency (NUE) are not well understood. Therefore, a field experiment was conducted to evaluate those impacts in a rice paddy soil received 225 kg N ha-1 from either urea or N-ric...
Publié dans: | Environmental technology. - 1993. - 39(2018), 16 vom: 27. Aug., Seite 2090-2096 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2018
|
Accès à la collection: | Environmental technology |
Sujets: | Journal Article Biochar NH3 volatilization nitrogen leaching nitrogen usage efficiency rice paddy soil Fertilizers Soil Waste Water biochar plus... |
Résumé: | Impacts of biochar application mode on nitrogen (N) leaching, ammonia (NH3) volatilization, rice grain yield and N use efficiency (NUE) are not well understood. Therefore, a field experiment was conducted to evaluate those impacts in a rice paddy soil received 225 kg N ha-1 from either urea or N-rich wastewater. One treatment received 10 t ha-1 biochar with the basal fertilization, and the other received same total amount of biochar but split applied with the three split N applications with same ratio as N fertilizer split ratio (40%, 30% and 30%). Results showed that N leaching loads were 4.20-6.22 kg ha-1. Biochar one-time application reduced N leaching by 23.1%, and biochar split application further reduced N leaching by 32.4%. Total NH3 volatilization loss was 15.5-24.5 kg ha-1. Biochar one-time application did not influence the NH3 volatilization, but biochar split application stimulated the cumulative NH3 volatilization by 57.7%. Both biochar treatments had no influence on NUE and rice grain yield. In conclusion, biochar application mode indeed influences the N leaching and NH3 volatilization in rice paddy soils, and biochar one-time application should be recommended for reducing N leaching without increasing NH3 volatilization |
---|---|
Description: | Date Completed 16.08.2018 Date Revised 07.12.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2017.1349839 |