|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM273380060 |
003 |
DE-627 |
005 |
20231225001110.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201701627
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0911.xml
|
035 |
|
|
|a (DE-627)NLM273380060
|
035 |
|
|
|a (NLM)28660620
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, Hui
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a 3D Printed Photoresponsive Devices Based on Shape Memory Composites
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.07.2018
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Compared with traditional stimuli-responsive devices with simple planar or tubular geometries, 3D printed stimuli-responsive devices not only intimately meet the requirement of complicated shapes at macrolevel but also satisfy various conformation changes triggered by external stimuli at the microscopic scale. However, their development is limited by the lack of 3D printing functional materials. This paper demonstrates the 3D printing of photoresponsive shape memory devices through combining fused deposition modeling printing technology and photoresponsive shape memory composites based on shape memory polymers and carbon black with high photothermal conversion efficiency. External illumination triggers the shape recovery of 3D printed devices from the temporary shape to the original shape. The effect of materials thickness and light density on the shape memory behavior of 3D printed devices is quantified and calculated. Remarkably, sunlight also triggers the shape memory behavior of these 3D printed devices. This facile printing strategy would provide tremendous opportunities for the design and fabrication of biomimetic smart devices and soft robotics
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D printing
|
650 |
|
4 |
|a fused deposition modeling
|
650 |
|
4 |
|a photoresponsive
|
650 |
|
4 |
|a shape memory devices
|
700 |
1 |
|
|a Leow, Wan Ru
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Ting
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Juan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yu, Jiancan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Ke
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qi, Dianpeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wan, Changjin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Xiaodong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 29(2017), 33 vom: 15. Sept.
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2017
|g number:33
|g day:15
|g month:09
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201701627
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2017
|e 33
|b 15
|c 09
|