Advances and Challenges in Metal Sulfides/Selenides for Next-Generation Rechargeable Sodium-Ion Batteries

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 48 vom: 23. Dez.
1. Verfasser: Hu, Zhe (VerfasserIn)
Weitere Verfasser: Liu, Qiannan, Chou, Shu-Lei, Dou, Shi-Xue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review anodes metal chalcogenides selenides sodium-ion batteries sulfides
Beschreibung
Zusammenfassung:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rechargeable sodium-ion batteries (SIBs), as the most promising alternative to commercial lithium-ion batteries, have received tremendous attention during the last decade. Among all the anode materials for SIBs, metal sulfides/selenides (MXs) have shown inspiring results because of their versatile material species and high theoretical capacity. They suffer from large volume expansion, however, which leads to bad cycling performance. Thus, methods such as carbon modification, nanosize design, electrolyte optimization, and cut-off voltage control are used to obtain enhanced performance. Here, recent progress on MXs is summarized in terms of arranging the crystal structure, synthesis methods, electrochemical performance, mechanisms, and kinetics. Challenges are presented and effective ways to solve the problems are proposed, and a perspective for future material design is also given. It is hoped that light is shed on the development of MXs to help finally find applications for next-generation rechargeable batteries
Beschreibung:Date Completed 18.07.2018
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201700606