Optimization and transferability of non-electrostatic repulsion in the polarizable density embedding model

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 38(2017), 24 vom: 15. Sept., Seite 2108-2117
1. Verfasser: Hršak, Dalibor (VerfasserIn)
Weitere Verfasser: Olsen, Jógvan Magnus Haugaard, Kongsted, Jacob
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't TDDFT multiscale modelling non-electrostatic repulsion polarizable density embedding solvent effect
LEADER 01000naa a22002652 4500
001 NLM273212656
003 DE-627
005 20231225000652.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24859  |2 doi 
028 5 2 |a pubmed24n0910.xml 
035 |a (DE-627)NLM273212656 
035 |a (NLM)28643344 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hršak, Dalibor  |e verfasserin  |4 aut 
245 1 0 |a Optimization and transferability of non-electrostatic repulsion in the polarizable density embedding model 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 Wiley Periodicals, Inc. 
520 |a Embedding techniques in combination with response theory represent a successful approach to calculate molecular properties and excited states in large molecular systems such as solutions and proteins. Recently, the polarizable embedding model has been extended by introducing explicit electronic densities of the molecules in the nearest environment, resulting in the polarizable density embedding (PDE) model. This improvement provides a better description of the intermolecular interactions at short distances. However, the electronic densities of the environment molecules are calculated in isolation, which results in overestimation of the non-electrostatic repulsion, thereby requiring a scaling of this term. In this work, an optimal scaling factor for the non-electrostatic repulsion term is examined by comparing intermolecular interaction energies obtained with embedding techniques to reference interaction energies calculated on the basis of full quantum-mechanical calculations. The obtained optimal factors are used in PDE calculations of various ground- and excited-state properties of molecules embedded in solvents described as polarizable environments. © 2017 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a TDDFT 
650 4 |a multiscale modelling 
650 4 |a non-electrostatic repulsion 
650 4 |a polarizable density embedding 
650 4 |a solvent effect 
700 1 |a Olsen, Jógvan Magnus Haugaard  |e verfasserin  |4 aut 
700 1 |a Kongsted, Jacob  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 38(2017), 24 vom: 15. Sept., Seite 2108-2117  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:38  |g year:2017  |g number:24  |g day:15  |g month:09  |g pages:2108-2117 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24859  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2017  |e 24  |b 15  |c 09  |h 2108-2117