Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi2 Te3

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 33 vom: 18. Sept.
1. Verfasser: Singh, Swati (VerfasserIn)
Weitere Verfasser: Mun, Hyeona, Lee, Sanghoon, Kim, Sung Wng, Baik, Seunghyun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article chemical potential doping exothermic reaction single-crystal Bi2Te3 thermopower waves
LEADER 01000naa a22002652 4500
001 NLM273184369
003 DE-627
005 20231225000608.0
007 cr uuu---uuuuu
008 231225s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201701988  |2 doi 
028 5 2 |a pubmed24n0910.xml 
035 |a (DE-627)NLM273184369 
035 |a (NLM)28640460 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Singh, Swati  |e verfasserin  |4 aut 
245 1 0 |a Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi2 Te3 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.07.2018 
500 |a Date Revised 01.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a The self-propagating exothermic chemical reaction with transient thermovoltage, known as the thermopower wave, has received considerable attention recently. A greater peak voltage and specific power are still demanded, and materials with greater Seebeck coefficients have been previously investigated. However, this study employs an alternative mechanism of transient chemical potential gradient providing an unprecedentedly high peak voltage (maximum: 8 V; average: 2.3 V) and volume-specific power (maximum: 0.11 W mm-3 ; average: 0.04 W mm-3 ) using n-type single-crystalline Bi2 Te3 substrates. A mixture of nitrocellulose and sodium azide is used as a fuel, and ultraviolet photoelectron spectroscopy reveals a significant downshift in Fermi energy (≈5.09 eV) of the substrate by p-doping of the fuel. The induced electrical potential by thermopower waves has two distinct sources: the Seebeck effect and the transient chemical potential gradient. Surprisingly, the Seebeck effect contribution is less than 2.5% (≈201 mV) of the maximum peak voltage. The right combination of substrate, fuel doping, and anisotropic substrate geometry results in an order of magnitude greater transient chemical potential gradient (≈5.09 eV) upon rapid removal of fuel by exothermic chemical reaction propagation. The role of fuel doping and chemical potential gradient can be viewed as a key mechanism for enhanced heat to electric conversion performance 
650 4 |a Journal Article 
650 4 |a chemical potential 
650 4 |a doping 
650 4 |a exothermic reaction 
650 4 |a single-crystal Bi2Te3 
650 4 |a thermopower waves 
700 1 |a Mun, Hyeona  |e verfasserin  |4 aut 
700 1 |a Lee, Sanghoon  |e verfasserin  |4 aut 
700 1 |a Kim, Sung Wng  |e verfasserin  |4 aut 
700 1 |a Baik, Seunghyun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 29(2017), 33 vom: 18. Sept.  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:29  |g year:2017  |g number:33  |g day:18  |g month:09 
856 4 0 |u http://dx.doi.org/10.1002/adma.201701988  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2017  |e 33  |b 18  |c 09