|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM273133500 |
003 |
DE-627 |
005 |
20231225000451.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201701494
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0910.xml
|
035 |
|
|
|a (DE-627)NLM273133500
|
035 |
|
|
|a (NLM)28635185
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zu, Lianhai
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Antipulverization Electrode Based on Low-Carbon Triple-Shelled Superstructures for Lithium-Ion Batteries
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 18.07.2018
|
500 |
|
|
|a Date Revised 01.10.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a The realization of antipulverization electrode structures, especially using low-carbon-content anode materials, is crucial for developing high-energy and long-life lithium-ion batteries (LIBs); however, this technology remains challenging. This study shows that SnO2 triple-shelled hollow superstructures (TSHSs) with a low carbon content (4.83%) constructed by layer-by-layer assembly of various nanostructure units can withstand a huge volume expansion of ≈231.8% and deliver a high reversible capacity of 1099 mAh g-1 even after 1450 cycles. These values represent the best comprehensive performance in SnO2 -based anodes to date. Mechanics simulations and in situ transmission electron microscopy suggest that the TSHSs enable a self-synergistic structure-preservation behavior upon lithiation/delithiation, protecting the superstructures from collapse and guaranteeing the electrode structural integrity during long-term cycling. Specifically, the outer shells during lithiation processes are fully lithiated, preventing the overlithiation and the collapse of the inner shells; in turn, in delithiation processes, the underlithiated inner shells work as robust cores to support the huge volume contraction of the outer shells; meanwhile, the middle shells with abundant pores offer sufficient space to accommodate the volume change from the outer shell during both lithiation and delithiation. This study opens a new avenue in the development of high-performance LIBs for practical energy applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a SnO2
|
650 |
|
4 |
|a antipulverization
|
650 |
|
4 |
|a carbon
|
650 |
|
4 |
|a lithium-ion batteries
|
650 |
|
4 |
|a triple-shelled structure
|
700 |
1 |
|
|a Su, Qingmei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Feng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Bingjie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Huanhuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Chengxin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Ting
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Du, Gaohui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a He, Pengfei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Kai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Shihe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Jinhu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Huisheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 29(2017), 34 vom: 18. Sept.
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2017
|g number:34
|g day:18
|g month:09
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201701494
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2017
|e 34
|b 18
|c 09
|