Fabrication of Millimeter-Long Carbon Tubular Nanostructures Using the Self-Rolling Process Inherent in Elastic Protein Layers

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 31 vom: 01. Aug.
1. Verfasser: Ko, Hyojin (VerfasserIn)
Weitere Verfasser: Deravi, Leila F, Park, Sung-Jin, Jang, Jingon, Lee, Takhee, Kang, Cheong, Lee, Jin Seok, Parker, Kevin Kit, Shin, Kwanwoo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article carbon fibers carbon nanotubes fibronectin graphene strain-driven self-rolling Nanotubes, Carbon Oxides Graphite 7782-42-5
Beschreibung
Zusammenfassung:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Millimeter-long conducting fibers can be fabricated from carbon nanomaterials via a simple method involving the release of a prestrained protein layer. This study shows how a self-rolling process initiated by polymerization of a micropatterned layer of fibronectin (FN) results in the production of carbon nanomaterial-based microtubular fibers. The process begins with deposition of carbon nanotube (CNT) or graphene oxide (GO) particles on the FN layer. Before polymerization, particles are discrete and nonconducting, but after polymerization the carbon materials become entangled to form an interconnected conducting network clad by FN. Selective removal of FN using high-temperature combustion yields freestanding CNT or reduced GO microtubular fibers. The properties of these fibers are characterized using atomic force microscopy and Raman spectroscopy. The data suggest that this method may provide a ready route to rapid design and fabrication of aligned biohybrid nanomaterials potentially useful for future electronic applications
Beschreibung:Date Completed 15.01.2019
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201701732