Three-Dimensional Binder-Free Nanoarchitectures for Advanced Pseudocapacitors

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 48 vom: 04. Dez.
1. Verfasser: Kang, Jianli (VerfasserIn)
Weitere Verfasser: Zhang, Shaofei, Zhang, Zhijia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review 3D graphene energy storage metal-atom/ion doping nanoporous metals pseudocapacitors
Beschreibung
Zusammenfassung:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The ever-increasing energy demands for electrification of transportation and powering of portable electronics are driving the pursuit of energy-storage technologies beyond the current horizon. Pseudocapacitors have emerged as one of the favored contenders to fill in this technology gap, owing to their potential to deliver both high power and energy densities. The high specific capacitance of pseudocapacitive materials is rooted in the various available oxidation states for fast surface or near-surface redox charge transfer. However, the practical implementation of pseudocapacitors is plagued by the insulating nature of most pseudocapacitive materials. The wealth of the research dedicated to addressing these critical issues has grown exponentially in the past decade. Here, we briefly survey the current progress in the development of pseudocapacitive electrodes with a focus on the discussion of the recent most exciting advances in the design of three-dimensional binder-free nanoarchitectures, including porous metal/graphene-based electrodes, as well as metal-atom/ion-doping-enhanced systems, for advanced supercapacitors with comparable energy density to batteries, and high power density
Beschreibung:Date Completed 18.07.2018
Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201700515