Study on method and mechanism of deep well circulation for the growth control of Microcystis in aquaculture pond

In order to control the growth of Microcystis in aquaculture ponds and reduce its adverse effect on water quality and aquaculture, a production-scale experiment of deep well circulation treatment was carried out in an aquaculture pond with water surface area of 63,000 m2 and water depth of 1.6-2.0 m...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 75(2017), 11-12 vom: 11. Juni, Seite 2692-2701
1. Verfasser: Cong, Haibing (VerfasserIn)
Weitere Verfasser: Sun, Feng, Wu, Jun, Zhou, Yue, Yan, Qi, Ren, Ao, Xu, Hu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In order to control the growth of Microcystis in aquaculture ponds and reduce its adverse effect on water quality and aquaculture, a production-scale experiment of deep well circulation treatment was carried out in an aquaculture pond with water surface area of 63,000 m2 and water depth of 1.6-2.0 m. Compared with the control pond, the experiment pond had better water quality as indicated by 64.2% reduction in chlorophyll a, and 81.1% reduction in algal cells. The chemical oxygen demand, total nitrogen, and total phosphorus concentration were reduced by 55.1%, 57.5%, and 50.8%, respectively. The treatment efficiency is mainly due to the growth control of Microcystis (i.e. cell reduction of 96.4%). The gas vesicles collapsing because of the water pressure was suggested to be the mechanism for Microcystis suppression by the deep well circulation treatment. The Microcystis lost its buoyancy after gas vesicles collapsed and it settled to the bottom of the aquaculture pond. As a result, the algae reproduction was suppressed because algae could only grow in the area with enough sunlight (i.e. water depth less than 1 m)
Beschreibung:Date Completed 17.08.2017
Date Revised 02.12.2018
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2017.159