Deformation Based Curved Shape Representation

In this paper, we introduce a deformation based representation space for curved shapes in . Given an ordered set of points sampled from a curved shape, the proposed method represents the set as an element of a finite dimensional matrix Lie group. Variation due to scale and location are filtered in a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 6 vom: 14. Juni, Seite 1338-1351
1. Verfasser: Demisse, Girum Getachew (VerfasserIn)
Weitere Verfasser: Aouada, Djamila, Ottersten, Bjorn
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM272922528
003 DE-627
005 20231224235922.0
007 cr uuu---uuuuu
008 231224s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2711607  |2 doi 
028 5 2 |a pubmed24n0909.xml 
035 |a (DE-627)NLM272922528 
035 |a (NLM)28613161 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Demisse, Girum Getachew  |e verfasserin  |4 aut 
245 1 0 |a Deformation Based Curved Shape Representation 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.04.2019 
500 |a Date Revised 04.04.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we introduce a deformation based representation space for curved shapes in . Given an ordered set of points sampled from a curved shape, the proposed method represents the set as an element of a finite dimensional matrix Lie group. Variation due to scale and location are filtered in a preprocessing stage, while shapes that vary only in rotation are identified by an equivalence relationship. The use of a finite dimensional matrix Lie group leads to a similarity metric with an explicit geodesic solution. Subsequently, we discuss some of the properties of the metric and its relationship with a deformation by least action. Furthermore, invariance to reparametrization or estimation of point correspondence between shapes is formulated as an estimation of sampling function. Thereafter, two possible approaches are presented to solve the point correspondence estimation problem. Finally, we propose an adaptation of k-means clustering for shape analysis in the proposed representation space. Experimental results show that the proposed representation is robust to uninformative cues, e.g., local shape perturbation and displacement. In comparison to state of the art methods, it achieves a high precision on the Swedish and the Flavia leaf datasets and a comparable result on MPEG-7, Kimia99 and Kimia216 datasets 
650 4 |a Journal Article 
700 1 |a Aouada, Djamila  |e verfasserin  |4 aut 
700 1 |a Ottersten, Bjorn  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 6 vom: 14. Juni, Seite 1338-1351  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:6  |g day:14  |g month:06  |g pages:1338-1351 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2711607  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 6  |b 14  |c 06  |h 1338-1351