Scene Segmentation with DAG-Recurrent Neural Networks

In this paper, we address the challenging task of scene segmentation. In order to capture the rich contextual dependencies over image regions, we propose Directed Acyclic Graph-Recurrent Neural Networks (DAG-RNN) to perform context aggregation over locally connected feature maps. More specifically,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 40(2018), 6 vom: 01. Juni, Seite 1480-1493
1. Verfasser: Shuai, Bing (VerfasserIn)
Weitere Verfasser: Zuo, Zhen, Wang, Bing, Wang, Gang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM272796727
003 DE-627
005 20231224235640.0
007 cr uuu---uuuuu
008 231224s2018 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2017.2712691  |2 doi 
028 5 2 |a pubmed24n0909.xml 
035 |a (DE-627)NLM272796727 
035 |a (NLM)28600239 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shuai, Bing  |e verfasserin  |4 aut 
245 1 0 |a Scene Segmentation with DAG-Recurrent Neural Networks 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.04.2019 
500 |a Date Revised 04.04.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we address the challenging task of scene segmentation. In order to capture the rich contextual dependencies over image regions, we propose Directed Acyclic Graph-Recurrent Neural Networks (DAG-RNN) to perform context aggregation over locally connected feature maps. More specifically, DAG-RNN is placed on top of pre-trained CNN (feature extractor) to embed context into local features so that their representative capability can be enhanced. In comparison with plain CNN (as in Fully Convolutional Networks-FCN), DAG-RNN is empirically found to be significantly more effective at aggregating context. Therefore, DAG-RNN demonstrates noticeably performance superiority over FCNs on scene segmentation. Besides, DAG-RNN entails dramatically less parameters as well as demands fewer computation operations, which makes DAG-RNN more favorable to be potentially applied on resource-constrained embedded devices. Meanwhile, the class occurrence frequencies are extremely imbalanced in scene segmentation, so we propose a novel class-weighted loss to train the segmentation network. The loss distributes reasonably higher attention weights to infrequent classes during network training, which is essential to boost their parsing performance. We evaluate our segmentation network on three challenging public scene segmentation benchmarks: Sift Flow, Pascal Context and COCO Stuff. On top of them, we achieve very impressive segmentation performance 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zuo, Zhen  |e verfasserin  |4 aut 
700 1 |a Wang, Bing  |e verfasserin  |4 aut 
700 1 |a Wang, Gang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 40(2018), 6 vom: 01. Juni, Seite 1480-1493  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:40  |g year:2018  |g number:6  |g day:01  |g month:06  |g pages:1480-1493 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2017.2712691  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2018  |e 6  |b 01  |c 06  |h 1480-1493