Iodine Vacancy Redistribution in Organic-Inorganic Halide Perovskite Films and Resistive Switching Effects

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 29(2017), 29 vom: 08. Aug.
1. Verfasser: Zhu, Xiaojian (VerfasserIn)
Weitere Verfasser: Lee, Jihang, Lu, Wei D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article illumination iodine vacancy organic-inorganic halide perovskite resistive switching
Beschreibung
Zusammenfassung:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Organic-inorganic halide perovskite (OHP) materials, for example, CH3 NH3 PbI3 (MAPbI3 ), have attracted significant interest for applications such as solar cells, photodectors, light-emitting diodes, and lasers. Previous studies have shown that charged defects can migrate in perovskites under an electric field and/or light illumination, potentially preventing these devices from practical applications. Understanding and control of the defect generation and movement will not only lead to more stable devices but also new device concepts. Here, it is shown that the formation/annihilation of iodine vacancies (VI 's) in MAPbI3 films, driven by electric fields and light illumination, can induce pronounced resistive switching effects. Due to a low diffusion energy barrier (≈0.17 eV), the VI 's can readily drift under an electric field, and spontaneously diffuse with a concentration gradient. It is shown that the VI diffusion process can be suppressed by controlling the affinity of the contact electrode material to I- ions, or by light illumination. An electrical-write and optical-erase memory element is further demonstrated by coupling ion migration with electric fields and light illumination. These results provide guidance toward improved stability and performance of perovskite-based optoelectronic systems, and can lead to the development of solid-state devices that couple ionics, electronics, and optics
Beschreibung:Date Completed 19.10.2018
Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201700527