Weakly Supervised Part Proposal Segmentation From Multiple Images

Weakly supervised local part segmentation is challenging, due to the difficulty of modeling multiple local parts from image level prior. In this paper, we propose a new weakly supervised local part proposal segmentation method based on the observation that local parts will keep fixed along the objec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 8 vom: 02. Aug., Seite 4019-4031
1. Verfasser: Fanman Meng (VerfasserIn)
Weitere Verfasser: Hongliang Li, Qingbo Wu, Bing Luo, King Ngi Ngan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM272548502
003 DE-627
005 20231224235112.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2017.2708839  |2 doi 
028 5 2 |a pubmed24n0908.xml 
035 |a (DE-627)NLM272548502 
035 |a (NLM)28574356 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fanman Meng  |e verfasserin  |4 aut 
245 1 0 |a Weakly Supervised Part Proposal Segmentation From Multiple Images 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.12.2018 
500 |a Date Revised 11.12.2018 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Weakly supervised local part segmentation is challenging, due to the difficulty of modeling multiple local parts from image level prior. In this paper, we propose a new weakly supervised local part proposal segmentation method based on the observation that local parts will keep fixed along the object pose variations. Hence, the local part can be segmented by capturing object pose variations. Based on such observation, a new local part proposal segmentation model is proposed. Three aspects, such as shape similarity-based cosegmentation, shape matching-based part detection and segmentation, and graph matching-based part assignment are considered. A part segmentation energy function is first proposed. Four terms, such as MRF-based single image segmentation term, shape feature-based foreground consistency term, NCuts-based part segmentation term, and two-order graphs matching based part consistency term, are contained. Then, a three sub-minimization-based energy minimization method is proposed to accomplish approximation solution. Finally, we verify our method based on three image data sets (PASCAL VOC 2008 Part data set, UCB Bird data set, and Cat-Dog data set), and one video data set (UCF Sports) data set. The experimental results demonstrate a better segmentation performance compared with the existing object cosegmentation and part proposal generation methods 
650 4 |a Journal Article 
700 1 |a Hongliang Li  |e verfasserin  |4 aut 
700 1 |a Qingbo Wu  |e verfasserin  |4 aut 
700 1 |a Bing Luo  |e verfasserin  |4 aut 
700 1 |a King Ngi Ngan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 26(2017), 8 vom: 02. Aug., Seite 4019-4031  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:26  |g year:2017  |g number:8  |g day:02  |g month:08  |g pages:4019-4031 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2017.2708839  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2017  |e 8  |b 02  |c 08  |h 4019-4031