|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM272506915 |
003 |
DE-627 |
005 |
20231224235019.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.7b00588
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0908.xml
|
035 |
|
|
|a (DE-627)NLM272506915
|
035 |
|
|
|a (NLM)28570069
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Cardiel, Allison C
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Electrochemical Growth of Copper Hydroxy Double Salt Films and Their Conversion to Nanostructured p-Type CuO Photocathodes
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.07.2018
|
500 |
|
|
|a Date Revised 23.07.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a New electrochemical synthesis methods were developed to produce copper hydroxy double salt(Cu-HDS) films with four different intercalated anions (NO3-, SO42-, Cl-, and dodecyl sulfate (DS)) as pure crystalline films as deposited (Cu2NO3(OH)3, Cu4SO4(OH)6, Cu2Cl(OH)3, and Cu2DS(OH)3). These methods are based on p-benzoquinone reduction, which increases the local pH at the working electrode and triggers the precipitation of Cu2+ and appropriate anions as Cu-HDS films on the working electrode. The resulting Cu-HDS films could be converted to crystalline Cu(OH)2 and CuO films by immersing them in basic solutions. Because Cu-HDS films were composed of 2D crystals as a result of the atomic-level layered structure of HDS, the CuO films prepared from Cu-HDS films have unique low-dimensional nanostructures, creating high surface areas that cannot be obtained by direct deposition of CuO, which has a 3D atomic-level crystal structure. The resulting nanostructures allowed the CuO films to facilitate electron-hole separation and demonstrate great promise for photocurrent generation when investigated as a photocathode for a water-splitting photoelectrochemical cell. Electrochemical synthesis of Cu-HDS films and their facile conversion to CuO films will provide new routes to tune the morphologies and properties of the CuO electrodes that may not be possible by other synthesis means
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
700 |
1 |
|
|a McDonald, Kenneth J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Choi, Kyoung-Shin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 33(2017), 37 vom: 19. Sept., Seite 9262-9270
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2017
|g number:37
|g day:19
|g month:09
|g pages:9262-9270
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.7b00588
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2017
|e 37
|b 19
|c 09
|h 9262-9270
|