|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM272467286 |
003 |
DE-627 |
005 |
20231224234927.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1177/0734242X17696147
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0908.xml
|
035 |
|
|
|a (DE-627)NLM272467286
|
035 |
|
|
|a (NLM)28566030
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Rai, Suchita
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Treatment of alumina refinery waste (red mud) through neutralization techniques
|b A review
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 04.12.2017
|
500 |
|
|
|a Date Revised 02.12.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a In the Bayer process of extraction of alumina from bauxite, the insoluble product generated after bauxite digestion with sodium hydroxide at elevated temperature and pressure is known as 'red mud' or 'bauxite residue'. This alumina refinery waste is highly alkaline in nature with a pH of 10.5-12.5 and is conventionally disposed of in mostly clay-lined land-based impoundments. The alkaline constituents in the red mud impose severe and alarming environmental problems, such as soil and air pollution. Keeping in view sustainable re-vegetation and residue management, neutralization/treatment of red mud using different techniques is the only alternative to make the bauxite residue environmentally benign. Hence, neutralization techniques, such as using mineral acids, acidic waste (pickling liquor waste), coal dust, superphosphate and gypsum as amenders, CO2, sintering with silicate material and seawater for treatment of red mud have been studied in detail. This paper is based upon and emphasizes the experimental work carried out for all the neutralization techniques along with a comprehensive review of each of the processes. The scope, applicability, limitations and feasibility of these processes have been compared exhaustively. Merits and demerits have been discussed using flow diagrams. All the techniques described are technically feasible, wherein findings obtained with seawater neutralization can be set as a benchmark for future work. Further studies should be focused on exploring the economical viability of these processes for better waste management and disposal of red mud
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Red mud
|
650 |
|
4 |
|a bauxite residue
|
650 |
|
4 |
|a neutralization techniques
|
650 |
|
4 |
|a pH
|
650 |
|
4 |
|a waste management
|
650 |
|
7 |
|a Industrial Waste
|2 NLM
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Aluminum Oxide
|2 NLM
|
650 |
|
7 |
|a LMI26O6933
|2 NLM
|
700 |
1 |
|
|a Wasewar, K L
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Agnihotri, A
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
|d 1991
|g 35(2017), 6 vom: 01. Juni, Seite 563-580
|w (DE-627)NLM098164791
|x 1096-3669
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2017
|g number:6
|g day:01
|g month:06
|g pages:563-580
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1177/0734242X17696147
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2017
|e 6
|b 01
|c 06
|h 563-580
|