Structural dissimilarity sampling with dynamically self-guiding selection

© 2017 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 38(2017), 22 vom: 15. Aug., Seite 1921-1929
1. Verfasser: Harada, Ryuhei (VerfasserIn)
Weitere Verfasser: Shigeta, Yasuteru
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't biologically relevant rare events conformational sampling molecular dynamics
LEADER 01000naa a22002652 4500
001 NLM272389668
003 DE-627
005 20231224234749.0
007 cr uuu---uuuuu
008 231224s2017 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.24837  |2 doi 
028 5 2 |a pubmed24n0907.xml 
035 |a (DE-627)NLM272389668 
035 |a (NLM)28558119 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Harada, Ryuhei  |e verfasserin  |4 aut 
245 1 0 |a Structural dissimilarity sampling with dynamically self-guiding selection 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2017 Wiley Periodicals, Inc. 
520 |a Structural dissimilarity sampling (SDS) has been proposed as an enhanced conformational sampling method for reproducing the structural transitions of a given protein. SDS consists of cycles of two steps: (1) Selections of initial structures with structural dissimilarities by referring to a measure. (2) Conformational resampling by restarting short-time molecular dynamics (MD) simulations from the initial structures. In the present study, an efficient measure is proposed as a dynamically self-guiding selection to accelerate the structural transitions from a reactant state to a product state as an extension to the original SDS. In the extended SDS, the inner product (IP) between the reactant and the snapshots generated by short-time MD simulations are evaluated and ranked according to the IPs at every cycle. Then, the snapshots with low IPs are selected as initial structures for the short-time MD simulations. This scheme enables one to choose dissimilar and distant initial structures from the reactant, and thus the initial structures dynamically head towards the product, promoting structural transitions from the reactant. To confirm the conformational sampling efficiency, the extended SDS was applied to maltodextrin binding protein (MBP), and we successfully reproduced the structural transition from the open to closed states with submicrosecond-order simulation times. However, a conventional long-time MD simulation failed to reproduce the same structural transition. We also compared the performance with that obtained by the ordinary SDS and other sampling techniques that have been developed by us to characterize the possible utility of the extended SDS for actual applications. © 2017 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a biologically relevant rare events 
650 4 |a conformational sampling 
650 4 |a molecular dynamics 
700 1 |a Shigeta, Yasuteru  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 38(2017), 22 vom: 15. Aug., Seite 1921-1929  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:38  |g year:2017  |g number:22  |g day:15  |g month:08  |g pages:1921-1929 
856 4 0 |u http://dx.doi.org/10.1002/jcc.24837  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 38  |j 2017  |e 22  |b 15  |c 08  |h 1921-1929