Self-Propulsion and Shape Restoration of Aqueous Drops on Sulfobetaine Silane Surfaces

The motion of droplets on typical surfaces is generally halted by contact line pinning associated with contact angle hysteresis. In this study, it was shown that, on a zwitterionic sulfobetaine silane (SBSi)-coated surface, aqueous drops with appropriate solutes can demonstrate hysteresis-free behav...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 33(2017), 24 vom: 20. Juni, Seite 6182-6191
1. Verfasser: Singh, Vickramjeet (VerfasserIn)
Weitere Verfasser: Wu, Cyuan-Jhang, Sheng, Yu-Jane, Tsao, Heng-Kwong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:The motion of droplets on typical surfaces is generally halted by contact line pinning associated with contact angle hysteresis. In this study, it was shown that, on a zwitterionic sulfobetaine silane (SBSi)-coated surface, aqueous drops with appropriate solutes can demonstrate hysteresis-free behavior, whereas a pure water drop shows spontaneous spreading. By adding solutes such as polyethylene glycol, 2(2-butoxy ethoxy) ethanol, or sodium n-dodecyl sulfate, an aqueous drop with a small contact angle (disappearance of spontaneous spreading) was formed on SBSi surfaces. The initial drop shape was readily relaxed back to a circular shape (hysteresis-free behavior), even upon severe disturbances. Moreover, it was interesting to observe the self-propulsion of such a drop on horizontal SBSi surfaces in the absence of externally provided stimuli. The self-propelled drop tends to follow a random trajectory, and the continuous movement can last for at least 10 min. This self-propelled random motion can be attributed to the combined effects of the hysteresis-free surface and the Marangoni stress. The former comes from the total wetting property of the surface, while the latter originates from surface tension gradient due to fluctuating evaporation rates along the drop border
Beschreibung:Date Completed 16.07.2018
Date Revised 16.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.7b01120