An Efficient Fusion-Based Defogging

Degradation in visibility is often introduced to images captured in poor weather conditions, such as fog or haze. To overcome this problem, conventional approaches focus mainly on the enhancement of the overall image contrast. However, because of the unspecified light-source distribution or unsuitab...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 26(2017), 9 vom: 25. Sept., Seite 4217-4228
1. Verfasser: Guo, Jing-Ming (VerfasserIn)
Weitere Verfasser: Syue, Jin-Yu, Radzicki, Vincent R, Lee, Hua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Degradation in visibility is often introduced to images captured in poor weather conditions, such as fog or haze. To overcome this problem, conventional approaches focus mainly on the enhancement of the overall image contrast. However, because of the unspecified light-source distribution or unsuitable mathematical constraints of the cost functions, it is often difficult to achieve quality results. In this paper, a fusion-based transmission estimation method is introduced to adaptively combine two different transmission models. Specifically, the new fusion weighting scheme and the atmospheric light computed from the Gaussian-based dark channel method improve the estimation of the locations of the light sources. To reduce the flickering effect introduced during the process of frame-based dehazing, a flicker-free module is formulated to alleviate the impacts. The systematic assessments show that this approach is capable of achieving superior defogging and dehazing performance, compared with superior defogging and dehazing performance, compared with the state-of-the-art methods, both quantitatively and qualitatively
Beschreibung:Date Completed 30.07.2018
Date Revised 30.07.2018
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2017.2706526